广州星辰包装有限公司防静电膜生产线新建项目竣工环境保护验收监测报告

编制单位:广州尚洁环保科技股份有限公司

编制时间: ____2025年8月

建	设	单	位:	广州星辰包装有限公司
			1	ITTers

法定代

项目负责人: 向迪兵

编制单位,广州尚洁环保科技股份有限公司

项目负责人: 陈玉兰

建设单位; 广州星辰包装有限公司	编制单位:广州尚洁环保科技股份有限公司
	电话: 020-82572975
传真:	传真:
地址:广州市黄埔区斗塘路3号2栋	地址: 广州市黄埔区开创大道 1936 号(自
101 房	编号 H6 栋) 1814 房-1815 房(自主申报)

目录	
1 前言	. 1
2 验收依据	. 3
2.1 相关法律法规、规章和规范	
2.2 建设项目竣工环境保护验收技术规范	
2.3 建设项目环境影响报告书(表)及其审批部门审批决定	.4
2.4 其他相关文件	. 4
3 建设项目工程概况	. 5
3.1 项目名称及建设性质	. 5
3.2 项目建设地点及平面布置	. 5
3.3 建设内容及规模	16
3.4 产品产能	17
3.5 主要原辅材料使用情况	18
3.6 设备设置情况	20
3.7 公用工程	20
3.8 生产工艺	21
3.9 项目变动情况	26
4 环境保护设施	29
4.1 污染物治理/处置设施	29
4.2 建设项目排污口规范化	30
4.3.环保设施投资及"三同时"落实情况	33
5 环境影响报告表主要结论与建议及其审批部门审批决定	34
	36
6.1 废气验收执行标准	36
6.2 废水验收执行标准	37
6.3 噪声验收执行标准	37
6.4 固体废物排放标准	37
7 验收监测内容	38
8 质量保证措施和监测分析方法,	40

8.1 质量保证措施	40
8.2 气体分析过程中的质量保证和质量控制	40
8.3 废水分析过程中的质量保证和质量控制	45
8.4 噪声分析过程中的质量保证和质量控制	47
8.5 监测分析方法	48
9 验收监测结果及分析	49
9.1 验收监测期间工况	49
9.2 验收监测结果及评价	49
10 环境管理检查	59
10.1 环保审批手续及"三同时"执行情况	59
10.2排污口规范化的检查结果	59
10.3 固体废物的排放、类别、处理和综合利用情况	59
10.4 环保机构的设置及环境管理规章制度	59
11 验收监测结论	61
11.1 环保设施调试运行效果	61
11.2 变动情况	62
11.3 综合验收结论	62
12 建设项目竣工环境保护"三同时"验收登记表	63
附件 1 营业执照	64
附件 2 排污登记回执	65
附件 3 环评批复	66
附件 4 危险废物处置合同	72
附件 5 验收检测报告	77
附件 6 项目竣工、调试时间公示照片	99
附件7 园区排水证	100
附件 8 工况证明	101
附件 & 其他雲要说明的事而	102

_

1 前言

广州星辰包装有限公司(以下简称"建设单位")注册地址位于广州市黄埔区 斗塘路 3 号 2 栋 101 房,主要经营范围包括木材加工、木制容器制造、纸制品制造、塑料制品制造等。

建设单位租赁广州市黄埔区永和街道环岭路 15 号已建成厂房建设"广州星辰包装有限公司防静电膜生产线建设项目"(以下简称"本项目"),并于 2025 年 1 月委托广州尚洁环保科技股份有限公司编制了《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》,该项目于 2025 年 4 月 25 日取得广州开发区行政审批局关于《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》的批复(批复文号: 穗开审批环评(2025) 73 号)。

根据广州开发区行政审批局关于《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》的批复(穗开审批环评(2025)73号),该项目建设内容为:内设无溶剂复合机、干式复合机、固化箱柜、4色凹版印刷机、涂布机、覆膜机等生产设备,以薄膜、无溶剂聚氨酯胶粘剂、水性油墨、乙醇、防静电液等为主要原辅材料,主要从事防静电膜、塑料薄膜生产,年产防静电屏蔽袋350吨、防静电铝箔防潮袋415吨、铝塑包装卷材450吨、食品包装膜/袋100吨、日化品包膜/袋100吨、EPE 防静电间纸487吨。该项目年工作300天,每天8小时。

本项目于 2025 年 4 月 26 日开工建设,2025 年 5 月 21 日竣工。项目调试时间为 2025 年 5 月 27 日至 2025 年 6 月 30 日。本项目排污许可证管理类别为登记管理,建设单位已于 2025 年 5 月 26 日完成排污许可登记(编号:91440116563975792T002Y)。现本项目主体设施及其配套建设的环保设施运行正常,已具备竣工环保验收条件。本次验收内容为《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》及其批复建设内容。

根据《建设项目环境保护管理条例》(国务院令第682号)、《建设项目竣工环境保护验收暂行办法》(国环规环评(2017)4号)和《广州市生态环境局关于规范建设单位自主开展建设项目竣工环境保护验收的通知》(穗环〔2020〕102号)等规定,按照环境保护设施与主体工程同时设计、同时施工、同时投入

使用"三同时"制度的要求,为查清本项目对环境影响报告表所提出的环境保护措施和建议的落实情况。

为此,建设单位委托广州尚洁环保科技股份有限公司承担本项目竣工环境保护验收监测报告编制工作。广州星辰包装有限公司委托广东景和检测有限公司于2025年6月3日~2025年6月4日对本项目废水、废气、噪声进行验收检测(检测报告编号: GDJH2505009EB)。广州尚洁环保科技股份有限公司根据验收监测及环境管理检查结果、编制完成了《广州星辰包装有限公司防静电膜生产线新建项目竣工环境保护验收监测报告》。

2 验收依据

2.1 相关法律法规、规章和规范

- (1)《中华人民共和国环境保护法》主席令2014年第9号,2014年4月24日修订,2015年1月1日起施行;
- (2) 《中华人民共和国环境影响评价法》(2018年修正本),2018年12月29 日修正:
- (3) 《建设项目环境保护管理条例》中华人民共和国国务院令第682号,2017 年10月1日起施行;
- (4)《中华人民共和国水污染防治法》,2017年6月27日第二次修正,2018年1月1日起施行;
 - (5) 《中华人民共和国大气污染防治法》,2018年10月26日第二次修正;
 - (6)《中华人民共和国噪声污染防治法》(2021年12月24日发布);
- (7) 《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订,2020年9月1日起施行:
- (8)《广东省固体废物污染环境防治条例》(2018年修订),2019年3月1日 起施行:
- (9)《国务院关于修改〈建设项目环境保护管理条例〉的决定》(国务院令第682号),2017年10月1日起施行。

2.2 建设项目竣工环境保护验收技术规范

- (1) 《建设项目竣工环境保护验收暂行办法》(国环规环(2017) 4号);
- (2) 广东省环境保护厅关于转发生态环境部《建设项目竣工环境保护验收暂行办法》的函(粤环函〔2017〕1945号);
 - (3)《建设项目竣工环境保护验收技术指南、污染影响类》(2018年5月);
- (4)《广东省生态环境厅关于做好建设项目竣工环境保护验收监管事项的公告》(2020年9月17日发布);
- (5)《广州市生态环境局关于建设项目竣工环境保护验收事项的通知》, (穗环〔2020〕68号);

- (6)《广州市生态环境局关于规范建设单位自主开展建设项目竣工环境保护验收的通知》(穗环〔2020〕102号);
- (7) 《关于印发污染影响类建设项目重大变动清单(试行)》(环办环评函(2020)688号)。

2.3 建设项目环境影响报告书 (表)及其审批部门审批决定

- (1)《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》
- (2)广州开发区行政审批局关于《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》的批复(穗开审批环评〔2025〕73 号)。

2.4 其他相关文件

- (1) 广东景和检测有限公司出具的检测报告(检测报告编号: GDJH2505009EB)。
 - (2) 危险废物处置合同。
 - (3) 广州星辰包装有限公司提供的其他相关资料。

3 建设项目工程概况

3.1 项目名称及建设性质

项目名称:广州星辰包装有限公司防静电膜生产线新建项目;

建设单位:广州星辰包装有限公司;

建设性质:新建;

验收范围。《广州皇辰包装有限公司防静电膜生产线新建项目环境影响报告表》及其批复建设内容。

3.2 项目建设地点及平面布置

3.2.1 项目地理位置及四至情况

本项目位于广州市黄埔区永和街道环岭路 15 号 (中心地理坐标为: 东经 113°32′15.925″, 北纬 23°4′15.256″)。厂区东面为环岭路, 南面为贤江新村, 西面为广东恒安纸品有限公司, 北面为时创智创局。本项目地理位置图详见图 3.2-1, 项目四至卫星图详见图 3.2-2。

3.2.2 项目平面布置

本项目租用广州市黄埔区水和街道环岭路 15 号已建成的厂房建设,总租赁面积(建筑面积)16256 平方米。本项目建筑物包括 1 栋单层仓库(自编 4 号楼),用于产品及原料储存; 1 栋 3 层生产车间(自编 1 号楼),其中 1 层为模切车间,2 层为覆膜车间,3 层为塑料袋车间;自编 2 号楼为 1 栋 3 层厂房,本项目仅租赁第 3 层,主要功能为印刷、复合、制袋生产车间及办公区,其余 1 层和 2 层为广东恒安纸品有限公司厂房。项目厂区总平面布置图详见图 3.2-3,各车间平面布局图详见附图 3.2-4。

3.2.3 项目周边环境保护目标

本项目周边 500m 范围内环境保护目标详见下表及图 3.2-5。

表 3.2-1 本项目的主要大气环境保护目标表

序	敏感点	坐	标	保护对		环境功	相对	相对项目
号	名称	X	Y	象	保护内容	能区	厂址 方位	厂界距离 /m
1	贤江新村	36	-117	居民区	约 1000 人	环境空	南面	75
2	贤江村	-260	-478	居民区	约 2000 人	气2类区	南面	490

备注:以2号楼厂址中心点位置为坐标原点(0,0),环境保护目标坐标取距离项目厂址中心点的最近点位置。

黄埔区地图 项目所在地 水和街道[⊙]

图 3.2-1 项目地理位置图

图 3.2-2 项目四至卫星图

图 3.2-3 厂区总平面布置

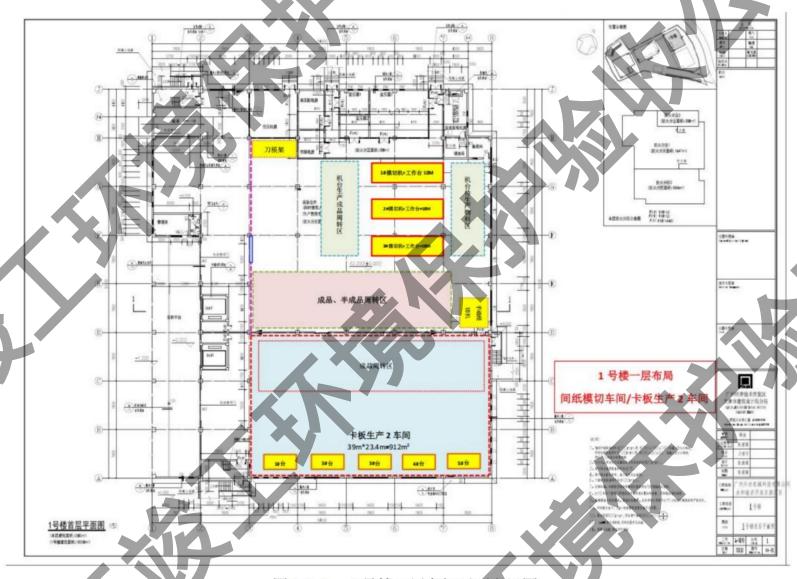


图 3.2-4a 1号楼 1 层车间平面布局图

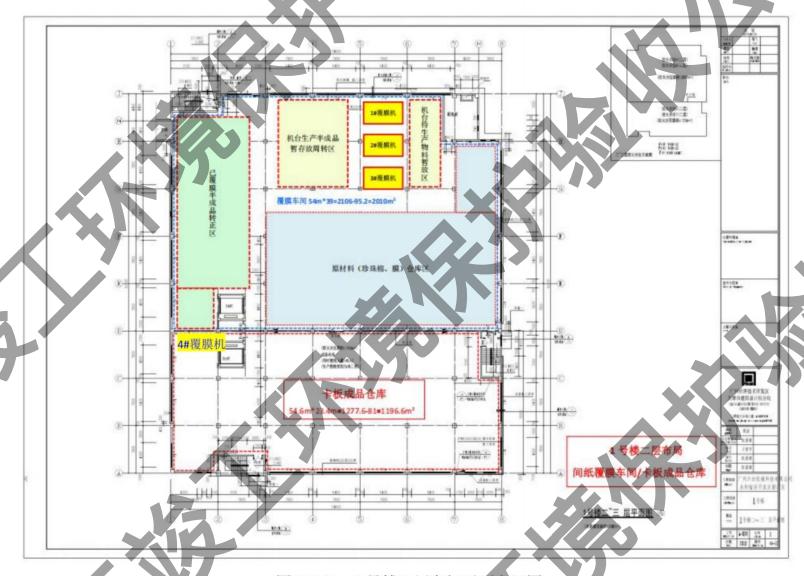


图 3.2-4b 1号楼 2 层车间平面布局图

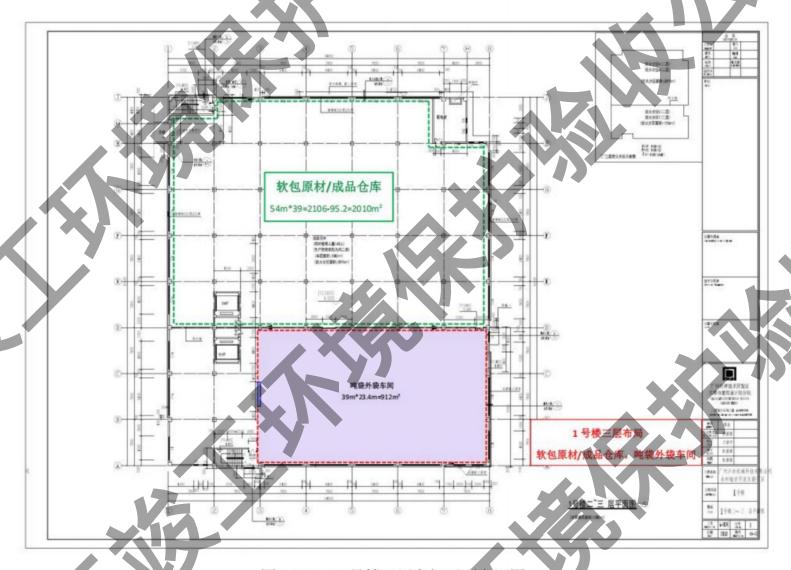


图 3.2-4c 1号楼 3 层车间平面布局图

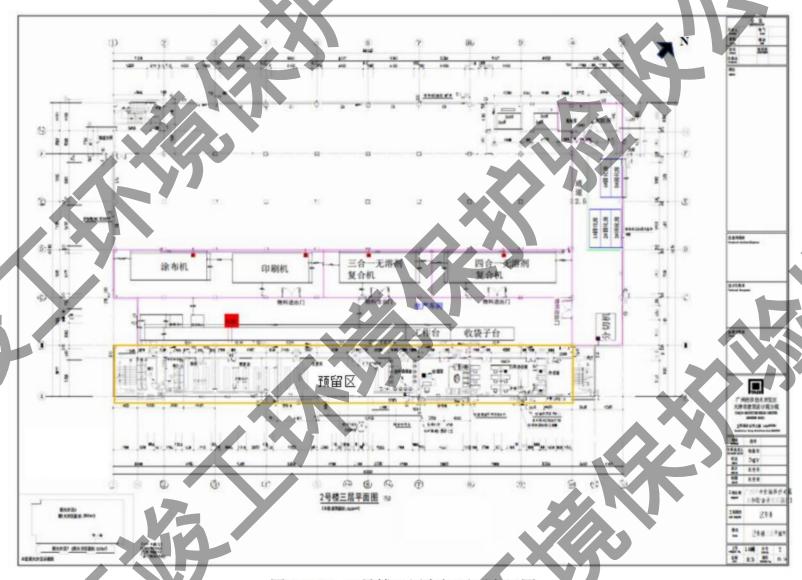


图 3.2-4d 2号楼 3 层车间平面布局图

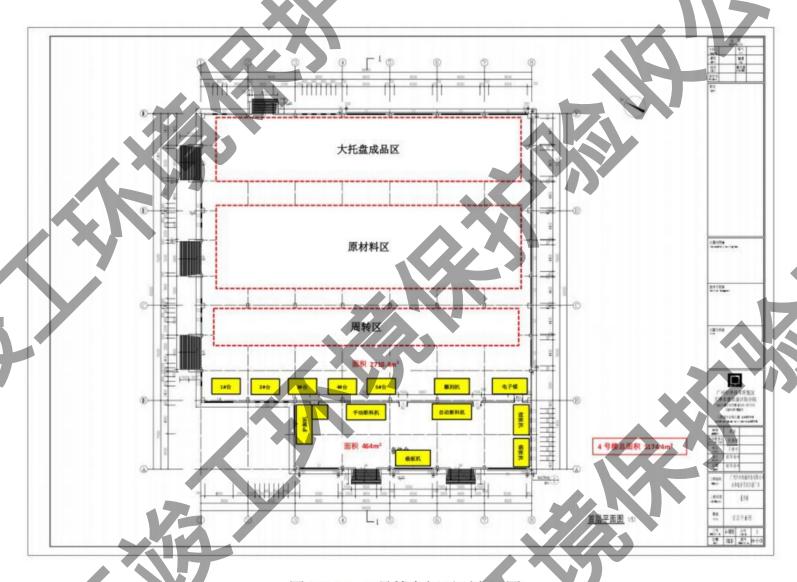


图 3.2-4e 4号楼车间平面布局图

图 3.2-5 项目周边 500m 范围内环境保护目标图

3.3 建设内容及规模

本项目建设内容及规模详见下表

表 3.3-1 项目建设工程组成变化情况一览表

			权 5.5-1 次日建议工	主語 从 文化	
	□程 }类	功能	环评建设内容	实际建设内容	变化情况
-	体程	生产车间	自编1号楼: 1栋3层生产车间,一层为模切车间和预留车间;二层为覆膜车间及预留仓库, 三层为原材料、成品仓及预留仓库。总建筑面积10109m², 其中本项目车间、仓库间为7088.4m², 预留车间、仓库面积共计3020.6m²。 自编2号楼: 项目租赁第3层,建筑面积为2481m², 包含生产车间及预留区。生产车间及预留区。生产车间为印刷、复合车间及制袋生产车间。	自编1号楼: 1栋3层生产车间,一层为模切车间、卡板车间、一层为模切车间、卡板车间、大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	自层现二库库仓袋间不 自变自作及为仓编原为层现三体交易间不 自变自作及为危楼车间留板预卡原为层现产统 楼 籍
		给水	留成品、原料仓库。 来自市政自来水供给。	板车间及仓库。 来自市政自来水供给。	变。
1 3547	、用 二程	系统 排水 系统	生活污水经三级化粪池处理后排入市政污水管网。	生活污水经三级化粪池处 理后排入市政污水管网。	不变
		供电 系统	由当地市政电网供给,不设 备用发电机。	由当地市政电网供给,不设 备用发电机。	不变
	/17	废气	有机废气由车间密闭收集 后经"二级活性炭吸附"装 置处理后,经排气筒 (DA001)15m排气筒排放。	有机废气由车间密闭收集 后经"二级活性炭吸附"装 置处理后,经排气筒 (DA001)//5m排气筒排放。	不变
	、 程	噪声	合理布局、减振、隔声等综 合降噪措施,高噪声设备设 置在专用的设备房内。	合理布局、减振、隔声等综合降噪措施,高噪声设备设置在专用的设备房内	不变
		废水	生活污水:三级化粪池预处理排入市政管网进入水和		不变

		4		99
工程 分类	功能	环评建设内容	实际建设内容	变化情况
		水质净化厂处理。	水质净化厂处理。	
	固体物	(1)设置一般工业固废暂存区,面积5m²,一般工业固体废物分类收集后暂存于一般固废暂存区,定期交由回收单位回收处理。 (2)设置危险废物暂存间、面积约5m²,危险废物分类收集后暂存危废暂存间,定期交由有相应危险废物资质单位处置,危险暂存间内不涉及火灾危险性为甲、乙类的物质。 (3)生活垃圾集中收集后交环卫部门统一清运处理。	(1) 设置一般工业固废暂存区,面积155m²,一般工业固体废物分类收集后暂存于一般固废暂存区,定期交由回收单位回收处理。 (2)设置危险废物暂存区、面积约50m²,危险废物分类收集后暂存危废暂存间,定期交由有相应危险废物资质单位处置,危险暂存间内不涉及火灾危险性为甲、乙类的物质。 (3)生活垃圾集中收集后交环卫部门统一清运处理。	不变

备注:自编1号楼原审批为预留车间或仓库,现实际建设为卡板车间、仓库及吨袋、外袋产品生产车间;自编4号楼原审批为预留仓库实际建设为卡板车间及仓库。卡板(木托盘)产品生产工艺为裁切、打钉、组装;吨袋、外袋产品以塑料袋为原料,生产工艺为缝纫,不涉及废气、废水产生。卡板(木托盘)产品、吨袋、外袋产品均属于《建设项目环境影响评价分类管理名录(2021年版)》中未做规定的建设项目,无需办理环评,本次验收内容不包含卡板(木托盘)产品、吨袋、外袋产品项目内容。

3.4 产品产能

本项目主要产品及产能情况详见下表。

3.4-1 项目产品及产能一览表

序号	产品	环评设计年产能	实际年产能	增减量	用途
1	防静电屏蔽袋	350吨	350 吨	0	电子类产品包装
2	防静电铝箔防 潮袋	415 吨	415 吨	0	电子类产品包装
3	锡塑包装卷材	450 吨	450 吨	0	电子、食品、日化 品重包装
4	食品包装膜/袋	100 吨	100吨	0	食品类产品包装
5	日化品包膜/袋	100 吨	100吨	0	生活用品、化妆品、 日化品类产品包装
6	EPE防静电间纸	487 吨	487 吨	0	电子类产品包装

3.5 主要原辅材料使用情况

本项目验收期间,主要原辅材料消耗情况详见下表。

表 3.5-1 本项目验收期间与环评阶段原辅材料使用情况对比

序号	产品	品原料名称		环评用量		验收监测期间用量 (t/d)	
,			t/a	t/d	2025.6.3	2025.6.4	
1		CPP膜	365	1.217	1.132	1.132	
2		CPE膜	600	2	1.860	1.860	
3		PET膜	100	0.333	0.310	0.310	
4	防静电屏蔽	APET膜	115	0.383	0.356	0.356	覆膜
	袋、防静电铝	VMPET镀铝膜	50	0.167	0.155	0.155	
	箔防潮袋、铝 塑包装卷材、	AL铝箔	135	0.450	0.419	0.419	
7	食品包装膜/	NY膜	65	0.217	0.202	0.202	
8	袋、日化品包 装膜/袋	无溶剂聚氨酯胶 粘剂	5.0	0.017	0.016	0.016	复合工序
9		水性油墨	0.702	0.002	0.002	0.002	印刷
10		乙醇 (浓度95%)	0.36	0.001	0.001	0.001	印刷/复合/ 涂布设备 清洁
	防静电屏蔽袋、防静电铝 箔防潮袋、铝 塑包装卷材	防静电液	1.75	0.006	0.006	0.006	涂布
12	EPE防静电	珍珠棉	285	0.950	0.884	0.884	EPE防静电
13	间纸	防静电薄膜	205	0.683	0.635	0.635	间纸覆膜

备注: ①验收期间,本项目于2025年6月3日~4日进行废水、废气、噪声检测、生产工况均为93%。上表验收监测期间原辅料用量指90%生产工况下实际用量。

本项目主要原辅材料理化性质详见下表。

表 3.5-2 主要原辅材料理化性质一览表

序号	名称	其他理化性质
1	CPP膜	即流延聚丙烯薄膜,也称未拉伸聚丙烯薄膜、按用途不同可分为通用CPP 薄膜、镀铝级CPP薄膜和蒸煮级CPP薄膜等。是塑胶工业中通过流延挤塑 工艺生产的聚丙烯(PP)薄膜。与其他薄膜相比,成本更低,产量更高 ;水气和异味阻隔性优良;多功能,可作为复合材料基膜;可作为食品 和商品包装及外包装,具有优良的演示性,可使产品在包装下仍清晰可 见。聚丙烯熔点164-170℃,分解温度260℃。

序号	名称	其他理化性 质
2	CPE膜	氯化聚乙烯膜,具有机械强度、阻隔性能、透明性能等。分解温度165℃。
3	PET膜	又名耐高温聚酯薄膜,由对苯二甲酸乙二醇酯发生脱水缩合反应而来。 对苯二甲酸乙二醇酯是由对苯二甲酸和乙二醇发生酯化反应所得。可在 120℃温度范围内长期使用,短期使用可耐150℃高温(半小时),可耐 -70℃低温,且高、低温时对其机械性能影响很小。具有优异的物理性能 、化学性能及尺寸稳定性、透明性、可回收性,可广泛地应用于磁记录 、感光材料、电子、电气绝缘、工业用膜、包装装饰、屏幕保护、光学 级镜面表面保护等领域。熔点250-255℃,分解温度353℃。
4	APET膜	化学名称为: 非结晶化聚对苯二甲酸乙二醇酯,具有强度好,扩充性能 优良、高透光率等特点,适合高强度透明包装,如食品或油脂性物品的 包装,文具、工具的吸塑包装。分解温度300℃。
5	VMPET 镀铝膜	聚酯镀铝薄膜,底层是一层PET薄膜,在PET薄膜上面蒸镀、层铝。镀铝层的厚度一般是300~500埃米,也就是0.03~0.05纳米。镀铝膜既有塑料薄膜的特性,又具有金属的特性。主要应用于饼干等干燥、膨化食品包装以及一些医药、化妆品的外包装上。分解温度300℃。
6	AL铝箔	用金属铝直接压延成薄片的烫印材料,其烫印效果与纯银箔烫印的效果相似,故又称假银箔。具有铝的质地柔软、延展性好、银白色光泽等特点,主要应用于包装、电解电容器、绝热等材料。
7	NY膜	尼龙是一种合成的热塑性线性聚酰胺(PA),无色透明度高;有良好的柔韧性、耐刺扎性、抗搅使性,适用于加真空包装;耐寒性、耐热性优良,耐油性、耐磨损性良好、隔绝性能好,易吸潮;无热封性能;常用作印刷材料,也可用作复合中层材料;适用于冷冻食品、抽真空、蒸煮食品、熟食类等的包装。分解温度大于300°C。
8	珍珠棉	聚乙烯发泡棉,由低密度聚乙烯脂经物理发泡产生无数的独立气泡构成。克服了普通发泡胶易碎、变形、恢复性差的缺点。熔点为50~60℃,燃点为100℃。具有隔水防潮、防震、隔音、保温、可塑性能佳、韧性强、循环再造、环保、抗撞力强等诸多优点,亦具有很好的抗化学性能。分解温度300℃。
9	防静电薄膜	防静电聚乙烯薄膜,是在PE原料中加入防静电剂使其表面电阻达到10~10Ω本身摩擦不产生静电,经高温定型后经久耐磨,从而起到良好的抗静电效果。分解温度300℃。
10	无溶剂 聚氨酯 胶粘剂	根据建设单位提供的MSDS报告,主要成分为异氰酸酯聚酯聚醚聚合物(100%),外观为无色或浅黄色澄清粘稠液、闪点大于200℃,相对密度(水=1)1.12g/cm³。稳定性:稳定。急性毒性:属于低毒化学品。危险性:对眼、鼻、咽喉有刺激作用。燃爆危险、本品可燃,具有刺激性。主要应用于PET、OPP、HDPE、LDPE、CPP、NY、铝膜等薄膜的无溶剂融合。根据VOCs含量检测报告,VOC含量为18g/kg。
11	水性油墨	根据建设单位提供的MSDS报告,主要成分为水 36.0% 、水溶性丙烯酸树脂 29.5% 、二氧化钛 29.0% 、乙醇 4.0% 、 α , ω -[1,4-二甲基-1,4-双(2-甲基丙基)-2-丁炔-1,4-二基]双[ω -羟基-聚(氧基-1,2-亚乙基)] 0.5% 、聚二甲基硅氧烷 0.5% 、2-萘磺酸、甲醛的聚合物钠盐 0.5% 。密度 $1.05g/cm^3$,乳白色液体,无气味,急性毒性: LD_{50} (经口): $20000mg/kg$ (大鼠), LD_{50} (经皮): $10000mg/kg$ (兔子)。危险性:本品易燃,水生危害

序号	名称	其他理化性质
		类别1。根据水性油墨VOCs检测报告,其VOCs含量为16.3%。
12	防静电液	根据建设单位提供的防静电液 MSDS, 防静电液主要成分为聚 (3, 4-亚乙二氧基噻吩)聚 (苯乙烯磺酸)30%~35%、二丙二醇甲醚8%~10%、异丙醇10%~12% 水 45%~52%。外观为深蓝色液体,密度:1.06g/cm³,溶解性:可溶子水。稳定性:稳定。危险性:刺激黏膜及呼吸道。根据防静电液的 VOCs 含量检测报告, VOCs 含量为 204g/L。
13		纯品,CAS 号 64-17-5,无色液体,有酒香。熔点为-114.1℃,沸点为 78.3℃,相对密度 0.79g/cm³。高度易燃,其蒸气与空气混合,能形成爆炸性混合物。与水混溶、可混溶于乙醚、氯仿、甘油、甲醇等多数有机溶剂。用于制酒工业、有机合成、消毒剂作溶剂。乙醇相对密度为 0.79g/cm³。

3.6 设备设置情况

本项目生产设备使用情况详见下表。

表 3.6-1 项目生产设备使用情况一览表

序号	产品类别	设备名称	环评审批数量	实际数量		生产工艺
1		三合一无溶剂复合机	1台	自台	0	
2	防静电屏	干式复合机	1台	7台	0	复合、烘干
3	蔽袋、防静电铝箔	四合一无溶剂复合机	冶	1台	0	
4	防潮袋、 铝塑包装	固化箱柜	5台	5台	0	固化
6	卷材、食	4色凹版印刷机	自台	1台	0	印刷
7	品包装膜/袋、日化	分切机	2台	2台	0	分切、对折
8	品包膜/袋	制袋机	10台	10台	0	制袋
9		封口机	5台	5台	0	
10	防蔽静防铝	涂布机	2台	2台	0	徐布、烘干
11	5 72	全自动模切机	3台	3台	0	分切、对折
12	EPE防静 电间纸	手动模切机	1台	1台	0	分切、对折
13		覆膜机	4台	4台	0	覆膜

3.7 公用工程

(1) 供电

本项目用电均由市政电网供给,不设备用发电机,项目用电量约200万kW·h/年。

(2) 给排水

本项目用水为职工生活办公用水,采用市政管网供给。本项目设有职工 120人,职工生活用水量为 1200m³/a。项目外排废水为生活污水,废水排放量为 1080m³/a。生活污水经园区 公级化粪池处理达标后,排入市政污水管网进入永和水质净化厂进行深度处理。

3.8 生产工艺

本项自产品为防静电屏蔽袋、防静电铝箔防潮袋、铝塑包装卷材、食品包装膜/袋、日化品包膜/袋、EPE 防静电间纸。其中防静电屏蔽袋、防静电铝箔防潮袋、铝塑包装卷材产品生产工艺基本一致,按复合使用的膜原料及印刷图案差异划分为各产品小类;食品包装膜/袋、日化品包膜/袋生产工艺基本一致,按复合使用的膜原料及印刷图案差异划分为各产品小类。产品生产工艺流程图如下。

(1) 生产工艺流程

①防静电屏蔽袋、防静电铝箔防潮袋、铝塑包装卷材生产工艺

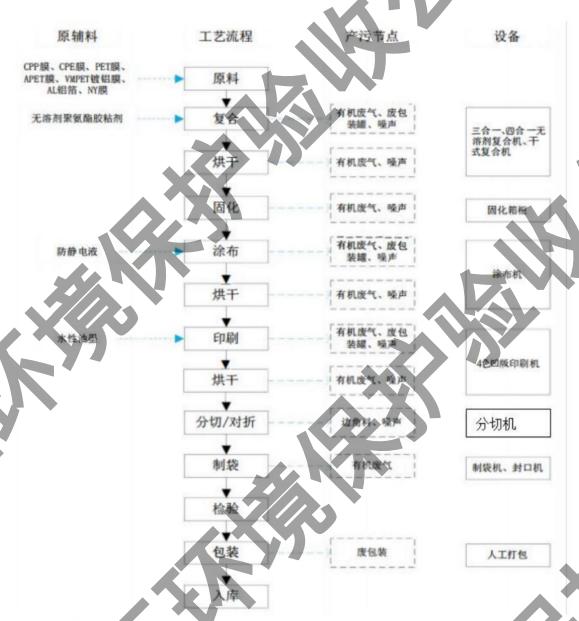


图 3.8-1 防静电屏蔽袋、防静电铝箔防潮袋、铝塑包装卷材生产工艺流程图工艺流程说明:

复合:根据产品类别使用复合机将无溶剂聚氨酯胶粘剂匀涂布在需要进行复合的一层薄膜上,通过复合机配套的烘干系统加热进行烘干,再与另一层薄膜通过复合机加热系统加热至 70-100℃热压贴合成复合膜。该工序会产生有机废气、臭气浓度、废原料桶/瓶、废抹布及手套、设备运行噪声。

固化:由于复合烘干后内层的胶尚未干透,故需要通过电加热将固化箱柜内部加热至 50-60℃,进行长时间烘干固化,使复合膜内层胶粘剂干透。该工序会产生有机废气、臭气浓度及设备运行噪声。

涂布: 使用涂布机通过网纹辊涂将防静电液均匀涂抹在复合膜上,以达到

隔离静电的目的。再通过涂布机烘干系统加热至 50-75 ℃对复合膜进行烘干。该工序会产生有机废气、臭气浓度、废原料桶/瓶、废抹布及手套、设备运行噪声。

印刷:根据产品要求,将需要印刷的复合膜进行印刷,印刷过程按照产品 logo 图形要求通过印刷机将油墨印刷在复合膜表面,经印刷机烘干系统加热至 60-80℃进行烘干。本项目印刷方式属于凹版印刷,印版使用过程中需定期清洁,清洁方式为采用湿抹布擦拭,因此会产生少量废抹布,不产生废水。该工序会产生有机废气、臭气浓度、废原料桶/瓶、废抹布及手套、设备运行噪声。

分切/对折:通过分切机将复合膜按照产品规格要求,分切为产品所需的宽度、对折。本项目产品主要应用于电子、食品、日化品行业,产品要求洁净度高,在分切过程严格控制粉尘产生。本项目使用的分切机具有高速度、高精度特性,可减少分切过程与材料的摩擦。该工序分切的材料均为软质塑料薄膜,具有厚度小,韧性强的特性,因此,在薄膜分切过程无粉尘产生,会产生少量的边角料及设备运行噪声。

制袋:制袋机制袋板加热至 100-120℃后,通过施加压力将复合膜紧密贴合, 形成封口扁平袋,封边不牢固时使用封口机热压烫封。该工序会产生有机废气、 臭气浓度及设备运行噪声。

检验:人工检验产品是否合格,合格产品打包入库,次品回到生产再加工。

②食品包装膜/袋、日化品包膜/袋生产工艺

图 3.8-2 食品包装膜/袋、日化品包膜/袋生产工艺流程图工艺流程说明:

印刷:按照产品图形要求通过印刷机将油墨印刷在复合膜表面,经印刷机烘干系统加热至60-80 ℃进行烘干。本项目印刷方式属于凹版印刷,印版使用过程中需定期清洁,清洁方式为采用湿抹布擦拭,因此会产生少量废抹布,不产生废水。该工序会产生有机废气、臭气浓度、废原料桶/瓶、废抹布及手套、设备运行噪声。

复合:使用复合机将胶粘剂匀涂布在需要进行复合的一层薄膜上,通过复合机配套的烘干系统加热进行烘干,再与另一层薄膜通过复合机加热系统加热至 70-100℃热压贴合成复合膜。该工序会产生有机废气、臭气浓度、废原料桶/瓶、废抹布及手套、设备运行噪声。

固化:由于复合烘干后内层的胶尚未干透,故需要通过电加热将固化箱柜

内部加热至 50-60℃,进行长时间烘干固化,使复合膜内层胶粘剂干透。该工序会产生有机废气、臭气浓度及设备运行噪声。

分切/对折:通过分切机将复合膜按照产品规格要求,分切为产品所需的宽度、对折。本项目产品主要应用于电子、食品、日化品行业,产品要求洁净度高,在分切过程严格控制粉尘产生。本项目使用的分切机具有高速度、高精度特性,可减少分切过程与材料的摩擦。该工序分切的材料均为软质塑料薄膜,具有厚度小,韧性强的特性,因此,在薄膜分切过程无粉尘产生,会产生少量的边角料及设备运行噪声。

制袋: 制袋机制袋板加热至 100-120℃后,通过施加压力将复合膜紧密贴合, 形成封口扁平袋。该工序会产生有机废气、臭气浓度及设备运行噪声。

检验: 人工检验产品是否合格, 合格产品打包入库, 次品回到生产再加工。

③EPE 防静电间纸生产工艺流程

图 3.8-3 EPE 防静电间纸生产工艺流程及产污环节图

工艺流程说明:

覆膜:利用覆膜机加热板加热软化珍珠棉双面切面,然后快速将防静电薄膜与珍珠棉工件的双侧切面热压贴合到一起,覆膜工作温度约为90℃,该过程中会产生有机废气(主要成分为非甲烷总烃)、臭气浓度和噪声。

裁切:通过模切机将 EPE 防静电间纸按照产品规格要求进行分切。本项目 EPE 防静电间纸产品用于电子行业包装,产品洁净度要求较高,在裁切过程严格 控制粉尘产生,使用高速模切机,具有高速度、高精度的特性,可以减少分切过程与材料的摩擦。该工序分切材料为珍珠棉及防静电聚乙烯薄膜,主要成分为柔软的聚乙烯发泡棉及防静电聚乙烯薄膜,具有厚度小,韧性强的特性,因此,裁切过程无粉尘产生,会产生边角料及设备运行噪声。

(2) 产污环节

根据以上本项目生产工艺流程图,项目生产过程产污环节详见下表。

表 3.8-1 项目产污环节一览表

X 5.0 1 X 1 / 15-1 / 55-X						
类别	产污环节	主要污染物	去向			
	复合、烘干、固化	非甲烷总烃、臭气浓度				
	涂布、烘牛	非甲烷总烃、臭气浓度	经收集后引至"二级活性炭			
废气	印刷、烘干	总VOCs、臭气浓度	吸附装置"处理后通过15m 排气筒 (DA001) 排放			
	制袋	非甲烷总烃、臭气浓度	排"间(DA001)排放			
	覆膜	非甲烷总烃、臭气浓度				
废水	生活污水	CODer、BOD5、NH3-N、SS	经三级化粪池处理,排入 市政污水管网、进入永和 水质净化/			
	生产过程 本废物 废气处理设施 办公及生活区域	边角料及次品	收集后交由专业公司回			
		包装废料	收处理			
国体序物		旧印版	供应商重新制版,用于生 产			
四件及初		废原料桶/瓶、含油墨废抹 布及手套	委托有资质单位转运处 理			
		废活性炭	理			
		生活垃圾	交给环卫部门清运			
噪声	生产过程	设备运行噪声Leq(A)	/			
			AC S			

3.9 项目变动情况

3.9.1 项目变动内容分析

经现场核实,本项目建设性质及规模、建设地点、生产工艺、环境保护措施的实际建设内容均与《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》及其批复(穗开审批环评(2025)73号)一致。

3.9.2 项目与《污染影响类建设项目重大变动清单(试行)》对比分析

表3.9-1项目与《污染影响类建设项目重大变动清单(试行)》对比分析一览表

		次3.7-1次日子/《7来影响天建区次日里人文列	HT (MI) // // // // JUN	
	类型	环办环评函 (2020) 688 号	项自实际建设情况	是否重 大变动
	性质	建设项目开发、使用功能发生变化的。	本项目开发、使用功能不变。	否
	规模	1.生产、处置或储存能力增大,导致废水第一类污染物排放量增加的。 2.生产、处置或储存能力增大,导致废水第一类污染物排放量增加的。 3.位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的《细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物、臭氧不达标区,相应污染物为氮氧化物、挥发性有机物;其他大气、水污染物因子不达标区,相应污染物为超标污染因子》;位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加10%及以上的。	1.本项目产品及产能规模不变。	否
	地点	重新选址;在原厂址附近调整(包括总平面布置变化)导致环境防护距离范围 变化且新增敏感点的。	本项目建设地址不变	否
	走产工 艺	1.新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加10%及以上的。 2.物料运输、装卸、贮存方式变化,导致大气污染物无组织排放量增加10%及以上的。	1.本项目产品品种及生产工艺与环评一致,未发生变化。 2.本项目物料装卸、贮存方式与环评一致。	否
1 83	不境保产措施	废气、废水污染防治措施变化,导致第"生产工艺"条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的。 1.新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放口位置变	1.本项目废气、废水污染让再措施均与环评一致,未发生变化。 2.项目噪声、土壤或地下水污染防治措施与环评一致, 未发生变化。	否

类型	环办环评函(2020)688号	项目实际建设情况	是否重 大变动
	化,导致不利环境影响加重的。 2.新增废气主要排放口(废气无组织排放改为有组织排放的除外);主要排放口排气筒高度降低10%及以上的。 3.噪声、土壤或地下水污染防治措施变化,导致不利环境。 4.固体废物利用处置方式由委托外单位利用处置改为自行利用处置的(自行利用处置设施单独开展环境影响评价的除外);固体废物自行处置方式变化,导致不利环境影响加重的。 5.事故废水暂存能力或拦截设施变化,导致环境风险防范能力弱化或降低的。	3.项目固体废物处置方式与环评一致,未发生变化。	

3.9.3 项目变动小结

对照《污染影响类建设项目重大变动清单(试行)》,本项目建设性质及规模、建设地点、生产工艺、环境保护措施实际建设内容均与《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》及其批复(穗开审批环评〔2025〕73 号》一致、未发生重大变动。

4 环境保护设施

4.1 污染物治理/处置设施

4.1.1 废气处理措施

本项目产生废气为复合、烘干固化、涂布、印刷、制袋、覆膜工序产生的有机废气、恶臭,主要污染物为非甲烷总烃、总VOCS、臭气浓度。

本项目复合、烘干固化、印刷、涂布、制袋工序所在生产车间均位于2#楼3 层。复合、烘干固化、印刷、涂布、制袋工序各生产区域设置局部密闭车间,其中复合、烘干固化、印刷、涂布设备废气产生点位设置集气管对废气进行收集。项目复合、烘干、印刷、涂布、制袋工序产生的有机废气经统一收集后引至一套"二级活性炭吸附装置"处理后通过15m排气筒排放。本项目覆膜工序所在车间位于另一栋厂房(1#楼2层),不利于统一收集,且覆膜工序有机废气产生量较小,产生的废气通过车间抽排风系统无组织排放。

4.1.2 废水处理措施

本项目产生废水为职工生活污水,经园区三级化粪池处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准后,排入市政污水管网进入永和水质净化厂处理。

4.1.3 噪声处理措施

本项目噪声源主要为三合一复合机、干式复合机、固化箱柜、涂布机等生产设备运行噪声,噪声值为 65~-85dB(A)。项目通过采取选择低噪声设备、采取减振、隔声、合理布局、利用墙体隔声等综合措施治理后,厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)的 3 类标准的要求。

4.1.4 固体废物处理措施

本项目产生固体废物包括生活垃圾、一般工业固废《废包装材料边角料和次品、旧印版》、危险废物(废原料桶/瓶、含油墨废抹布及手套、废活性炭、废油墨及废胶水)。

本项目产生的危险废物暂存了危险废物暂存间,一般工业固体废物储存于一

般工业固体废物储存区。项目危险废物暂存间接《危险废物贮存污染控制标准》 (GB18597-2023)要求设置,一般工业固体废物储存区按《广东省固体废物污染环境防治条例》的相关规定,其贮存过程满足相应防渗漏、防雨淋、防扬尘等环境保护要求。本项目固体废物产生及处置情况详见下表。

表 4-1 本项目固废产生及处置情况一览表

名称	属性	废物代码	产生量(t/a)	处置方式及去向
生活垃圾			36	收集后由环卫部门统一回 收处置
废包装材料	般工业 固体废物	900-003-S17	0.3	收集后交由资源回收单位 回收处理
边角料和次品	一般工业 固体废物	900-003-S17	14.3	收集后交由资源回收单位 回收处理
旧印版	一般工业 固体废物		0.2	由供应商回收,重新制版, 用于生产
废原料瓶/桶	危险废物	900-041-49	0.2	
废活性炭	(HW49 其他废 物)	900-039-49	8.115	
含油墨废抹布 及手套	危险废物 (HW12	900-253-12	0.06	收集后交给东莞市新东欣
废油墨	染料、涂 料废物)	900-252-12	0.5	环保投资有限公司
废胶水	危险废物 (HW13 有机树脂 类废物)	900-014-13	0.5	

4.2 建设项目排污口规范化

根据现场核查,本项目已根据《关于印发广东省污染源排污口规范化设置导则的通知》(粤环(2008)42号)、《环境保护图形标志固体废物贮存(处置)场》(GB15562.2-1995)要求,设置排污口标志牌,排气筒已按环境监测规范要求设置取样孔及采样平台。项目危险废物暂存间已按《危险废物识别标志设置技术规范》(HJ 1276-2022)设置相关标识。

本项目主要生产设备、废气收集、处理设施、废气排放口、一般工业固体废物暂存间及危废暂存间现场照片如下。

印刷设备集气管废气收集设施

印刷设备(设置独立密闭车间)

涂布设备顶部集气管负压收集点位

涂布设备顶部集气管负压收集点位

徐布设备侧方集气管收集点位

涂布设备(设置独立密闭车间)

复合设备(设置独立密闭车间)

烘干设备(密闭设备连接集气管收集)

制袋车间(车间密闭)

覆膜车间

模切车间

二级活性炭废气处理设施

废气排放口(气-01)

4.3.环保设施投资及"三同时"落实情况

本项目实际总投资 1000 万元, 其中环保投资 20 万元, 占总投资的 2.0%

表 4.3-1 项目环保投资情况一览表

项目	项目投资 (万元)
嗳气 收集、处理措施	14
噪声減振措施	1
固体废物 (委托处理费用)	5
合计	20

(2) 环保设施"三同时"落实情况

本项目执行了国家有关建设项目环保审批手续及"三同时"制度。环评、环保设计手续齐全,环保设施均能正常运行,与主体工程同时设计、同时施工、同时投产使用,因此"三同时"已得到落实。

5 环境影响报告表主要结论与建议及其审批部门审批决定

类型	环评批复要求	实际落实情况	与环评及批复 是否相符
废水治理措 施和要求	办公生活污水经三级化粪池预处理、在满足广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准的前提下,排入市政污水管网由永和水质净化厂集中处理。	本项目员工生活污水经园区三级化粪池处理达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后排入市政污水管网,进入永和水质净化厂处理。	是
废气治理措施和要求	1.复合、印刷、制袋、设备清洁工序产生的废气(总 VOCs、NMHC、恶臭污染物)车间密闭负压收集经二级活性炭吸附处理其中 NMHC 应达到《印刷工业大气污染物排放标准》(GB41616-2022)表 1 大气污染物排放限值及《合成树脂工业污染物排放标准》(GB31572-2015)及其修改单表 5 大气污染物特别排放限值较严值,总 VOCs 应达到广东省《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表 2 凹版印刷第 II 时段排放限值,臭气浓度应达到《恶臭污染物排放标准》(GB14554-93)表 2 恶臭污染物排放标准值后引至排气(DA001)高空排放,排气筒出口处距离地平面高度不低于 15 米。 2.排气筒应按有关环境监测规范要求设置取样孔及取样平台,以便环境监测部门进行取样监测。 3.厂区内 VOCs 应满足广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值;厂界非甲烷总烃应满足《合成树脂工业污染物排放标准》(GB31572-2015)及其修改单表 9 企业边界大气污染物排放浓度限值,具气浓度应满足《恶臭污染	1.项目复合、烘干固化、印刷、制袋、设备清洁产生的废气(总VOCs、NMHC、恶臭污染物)经设备连接管道及车间密闭收集后引至二级活性炭吸附装置处理后,废气排气筒高度17m(气-01)。根据废气监测报告,复合、烘干、印刷、制袋、设备清洁产生的废气经收集处理后,NMHC达到《印刷工业大气污染物排放标准》(GB41616-2022)表1大气污染物排放限值及《合成树脂工业污染物排放标准》(GB31572-2015)及其修改单表5大气污染物特别排放限值较严值要求,总VOCs达到广东省《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表2凹版印刷第Ⅱ时段排放限值要求,臭气浓度达到《恶臭污染物排放标准》(GB14554-93)表2恶臭污染物排放标准值要求。 2.气-01排气筒已按《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)/《固定源废气监测技术规范》(HJ/T397-2007)等要求设置取样孔、以便环境监测部门进行取样监测。 3.根据废气监测报告,厂区内 VOCs 满足广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表3厂区	是

			**
类型	环评批复要求	实际落实情况	与环评及批复 是否相符
	物排放标准》(GB14554-93)表 1 恶臭污染物厂界标准值。	内 VOCs 无组织排放限值要求; 厂界非甲烷总烃满足《合成树脂工业污染物排放标准》(GB31572-2015) 及其修改单表9企业边界大气污染物排放浓度限值要求, 臭气浓度满足《恶臭污染物排放标准》(GB14554-93) 表 1 恶臭污染物厂界标准值要求。	ZHINI
噪声防治措 施和要求	应对声源设备进行合理布设,同时采取隔声、降噪、防振等措施,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。	本项目对声源设备进行合理布设, 同时采取隔声、降噪、防震等措施后, 厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008) 3 类标准。	是
固体废弃物处理措施和要求	1.废原料桶/瓶、含油墨废抹布及手套、废活性炭等属《国家危险废物名录》中的废物,应按有关规定进行收集,委托具有相应危险废物经营许可证资质的单位进行集中处理。按时完成年度固体废物申报登记。危险废物暂存场应按照国家《危险废物贮存污染控制标准》(GB18597-2023)的要求进行设置; 2.废包装材料、边角料和次品、旧印版等应委托有相应经营范围或处理资质的公司回收或处理。 3.生活垃圾应按环卫部门的规定实行分类收集和处理。	1.本项目废原料桶/瓶、含油墨废抹布及手套、废活性炭等危险废物储存于危险废物暂存间,危险废物暂存间符合《危险废物贮存污染控制控制标准》(GB18597-2023)要求。各危险废物定期交给有危险废物处理资质的单位处理。 2.本项目废包装材料、边角料和次品收集后交由资源回收单位回收处理;旧印版由供应商回收,重新制版,用于生产。 3.生活垃圾交由环卫部门收集处理。	PE .
其他	1. 应设专职人员负责该项目的环境管理工作,建立健全环境管理制度,杜绝污染物超标排放,对物品在运输、存放、使用等全过程进行有效管理,并应采取有效措施防范和应对环境污染事故发生;妥善处置固体废物并承担监督责任,防止造成二次污染。 2. 应按《关于印发广东省污染源排污口规范化设置导则的通知》(粤环〔2008〕42 号)要求设置排污口。	1.公司已设专职人员负责该项目的环境管理工作,建立健全环境管理制度。 2.本项目已按《关于印发广东省污染源排污口规范化设置导则的通知》(粤环〔2008〕42号》要求设置废气排放口、一般工业固体废物及危险废物暂存间。	是

6 验收执行标准

本项目验收执行标准根据《广州星辰包装有限公司防静电膜生产线新建项目 环境影响报告表》及其批复(穗升审批环评〔2025〕73号)确定。

6.1 废气验收执行标准

本项目产生废气主要为复合、烘干固化、涂布、印刷、制袋及覆膜工序废气 主要污染物为总 VOCs、非甲烷总烃、臭气浓度。

本项目有组织排放的非甲烷总烃执行《印刷工业大气污染物排放标准》(GB41616-2022)表 1 大气污染物排放限值及《合成树脂工业污染物排放标准》(GB31572-2015 及 2024 年修改单)表 5 大气污染物排放限值较严者; 总 VOCs 执行广东省《印刷行业挥发性有机化合物排放标准》《DB44/815-2010》表 2 凹版印刷第 II 时段排放限值; 臭气浓度执行《恶臭污染物排放标准》(GB14554-93)中表 2 恶臭污染物排放标准值。

厂界无组织排放的挥发性有机物(总 VOCs) 执行广东省《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)中表 3 无组织排放监控点浓度限值;非甲烷总烃执行《合成树脂工业污染物排放标准》(GB31572-2015 及 2024 年修改单)表 9 企业边界大气污染物排放浓度限值; 臭气浓度执行《恶臭污染物排放标准》(GB14554-93)表 1 恶臭污染物厂界标准值中二级新、扩、改建标准。

厂区内无组织排放的有机废气执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值。

综上,本项目废气排放标准详见下表。

最高允许 无组织排放 最高允许 工序 排放源 监控浓度限 标准来源 污染物 排放浓度 排放速率 值(mg/m³) (mg/m^3) (kg/h) GB41616-2022/ 复合、烘 GB31572-2015 非甲烷总烃 60 古 及 2024 年修改 单较严者 化、涂 DA001 布、印刷 总 VOCs 120 2.55 2.0 DB44/815-2010 制袋 2000 臭气浓度 20 (无量纲) GB14554-93 (无量纲)

表 6.1-1 本项目大气污染物排放执行标准

注: 本项目所在厂房为不超过周边 200m 内建筑 5m 以上,排放速率减半执行。

表 6.1-2 本项目厂区内有机废气无组织排放限值

污染物	排放限值(mg/m³)	限值含义	无组织排放监控位置
NMIC	6	监控点处 In 平均浓度值	大厂良加温收拾 上
NMHC	20	监控点处任意一次浓度值	在厂房外设置监控点

6.2 废水验收执行标准

本项目外排废水为生活污水,经园区三级化粪池预处理后排入市政污水管网,进入水和水质净化厂处理。废水排放执行广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准,详见下表。

表 6.2-1 废水排放执行标准一览表(单位: mg/L)

执行标准	рН	CODer	BOD ₅	SS	NH ₃ -N
(DB44/26-2001) 第二时段三级标准	6-9(无量纲)	≤500	≤300	<u>≤400</u>	_

6.3 噪声验收执行标准

本项目厂界噪声排放执行《工业企业厂界环境噪声排放标准》 (GB12348-2008) 3 类标准,即: 昼间≤65dB(A)、夜间≤55dB(A)。

6.4 固体废物排放标准

- (1)项目一般工业固废贮存应遵照《中华人民共和国固体废物污染环境防治法》《广东省固体废物污染环境防治条例》的相关规定,其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求。
 - (2) 危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2023)。

7 验收监测内容

本项目验收监测指标、监测点位及监测频次详见下表7-1,监测点位图详见 附件5监测报告。

		表7-1 验收	化监测内容一览表	
序号	检测类 型	采样点位	检测因子	检测频次
1	废水	园区生活污水处理后 排放口(水-01)	pH 值、化学需氧量、五 日生化需氧量、悬浮物、 氨氮	共1个监测点,监测2天,每天监测4次
2	有组织废气	复合、印刷、涂布、烘干、制袋工序废气处理 前监测口(气-01) 复合、印刷、涂布、烘干、制袋工序废气处理 后监测口(气-01)	非甲烷总烃、VOCs、 臭气浓度	集2个监测点,监测 2天,每天监测3次(臭 气浓度每天监测4次)
3	无组织 废气	厂界无组织废气 上风向参照点 1# 厂界无组织废气 下风向监控点 2# 厂界无组织废气 下风向监控点 3# 厂界无组织废气 下风向监控点 3#	非甲烷总烃、VOCs、 臭气浓度	共4个监测点,监测 2天,每天监测3次(臭 气浓度每天监测4次)
		厂区内无组织废气 2 号楼 3 层生产车间门口监测点 5# 厂区内无组织废气 1 号楼 2 层生产车间门口监测点 6#	非甲烷总烃	共2个监测点,监测2天,每天监测3次
4	噪声	厂界西南侧外1米处1# 厂界西北侧外1米处2# 厂界东北侧外1米处3# 厂界东南侧外1米处4#	工业企业厂界环境噪声	集4个监测点,监测 2天,每天昼间、夜间 各监测1次

附:采样点点位示意图 (示意图不成比例) (表示方式:废水★,有组织废气◎,无组织废气〇,噪声▲)

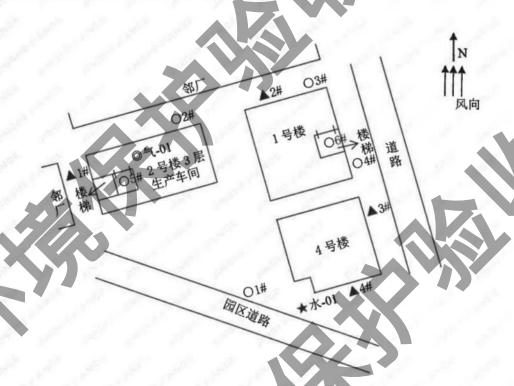


图 7-1 验收监测采样点位图

8 质量保证措施和监测分析方法

8.1 质量保证措施

为保证验收监测数据的合理性、可靠性、准确性,根据《环境监测技术规范》 质量保证的要求,对监测的全过程(布点、采样、样品贮存、试验室分析和数据 处理等)进行了质量控制。

- (1) 所有参加监测采样和分析人员必须持证上岗。
- (2) 严格按照验收监测方案的要求开展监测工作。
- (3) 合理规范设施监测点位、确定监测因子与频次,保证验收监测数据的 准确性和代表性。
- (4) 采样人员严格遵照采样技术规范进行采样工作,认真填写采样记录, 按规定保存、运输样品。
- (5) 监测分析采用国家有关部门颁布的标准分析方法或推荐方法,监测人员经过考核合格并持有上岗证;所用监测仪器、量具均经计量部门检定合格并在有效期内使用。
- (6) 采样分析及分析结果按国家标准和监测技术规范的相关要求进行数据 处理和填报。
 - (7) 监测数据和报告严格执行三级审核制度

8.2 气体分析过程中的质量保证和质量控制

表 8.2-1 样品保存方式一览表

序号	检测项目	固定剂	容器材料	保存温度	保存时间	
1	臭气浓度(有组织)	/	采气袋	常温、避光	24h	
2	臭气浓度(无组织)	1	真空瓶	常温、避光	24h	
3	非甲烷总烃	/	采气袋	常温	48h	
4	总 VOCs	/	吸附管		/	

表 8.2-2 质控措施具体实施情况一览表

	项目	基础样 品总数 (个)	现场平 行(个)	实验室 平行 (个)	质控样 (个)	现场空 白(个)	实验室 空白 (个)	运输空白(个)	全程序 空白 (个)	穿透试 验(个)
有组织	非甲烷总烃	48	/	6	6	1	1	2	/	1
废气	总 VOCs	12	/	TV.	/	2	/	/	/	2
无组织	非甲烷总烃	156	12	20	15	1	/	/	/	/
废气	总 VOCs	24				/	/	/	/	2

表 8.5-3 质控样测试结果

	30 - 100 AN TOTAL CONTROL					
检测项目	内部编号	证书编号	标准值范 围	实测结 果	单位	判定
	SQ-25-001	GBW(E)062421	7.21±2%	7.22	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.14	mg/m³	合格
田原 (左炯炯)	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m³	合格
甲烷 (有组织)	SQ-25-001	GBW(E)062421	7.21±2%	7.12	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.16	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.18	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m ³	合格
1///	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.24	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.20	mg/m ³	合格
7	SQ-25-001	GBW(E)062421	7.21±2%	7.16	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.20	mg/m ³	合格
甲烷 (无组织)	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.28	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.27	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.21	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.20	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.27	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.14	mg/m³	合格
Va	SQ-25-001	GBW(E)062421	7.21±2%	7.24	mg/m ³	合格

表 8.2-4 废气空白样测试结果

4A,200,755 EI	检验	**	مر ایار	
检测项目	现场空白	运输空白	单位	判定
世界校览区(左纽纽)	/	ND	mg/m ³	合格
#甲烷总烃(有组织) ──	/	ND	mg/m³	合格
总 VOCs(有组织)	ND	1	mg/m³	合格
	ND	1	mg/m ³	合格

表 8.2-5 穿透试验测试结果

采样日期	检测项目	测试结界	e (mg/m³)	穿透率 (%)	允许穿透率 (%)	判定
2025/06/03	总 VOCs (有组织)	前管 1 后管 2	18.6	7.1	≤10	合格
	总 VOCs (无组织)	前管 1 后管 2	0.39	7.1	≤10	合格
2025/06/04	总 VOCs (有组织)	前管 1 后管 2	19.0 1.52	7.4	≤10	合格
2025/06/04	总 VOCs (无组织)	前管 1 后管 2	0.52 0.04	7.1	≤10	合格
备注: 允许	穿透率参考《	印刷行业挥	发性有机物排	放标准》(DB	44/815-2010) .	V

表 8.2-6 废气平行样测试结果

采样日期	检测项目	实验室平行样结果	相对偏差	允许相对偏差	判定
Sell Ham	EUNAL	(mg/m³)	(%)	(%)	7,7,0
		16.6	0.3	≤15	合格
		16.5	0.5	215	пт
2025/06/03	非甲烷总烃	2.66	0.2	≤15	合格
2023/00/03	(有组织)	2.65	0.2	213	пт
		2.67	0.6	≤15	合格
		2.70	0.0	215	птп
		17.4	0.3	≤15	合格
		17.5	0.5	213	шш
2025/06/04	非甲烷总烃	2.69	0.2	≤15	合格
2023/00/04	(有组织)	2.70	0.2	=13	ППП
		2.66	0.6	≤15	合格
		2.63	0.0	215	11414
		0.19	5.6	≤20	合格
		0.17	3.0		FILE
		0.13	16.1	≤20	合格
		0.18	10.1		ПАП
RAY		0.52	3.7	≤20	合格
		0.56	3.7	20	пп
2025/06/03	非甲烷总烃	0.56	7.7	≤20	合格
2023/00/03	(无组织)	0.48		320	11111
		0.33	2.9	≤20	合格
		0.35	2,9		υπ
		0.35	1.4	≤20	合格
		0.34	1.4		ПЛЦ
		0.46	1.1	≤20	合格
		0.45	1.1	220	D 1H

采样日期	检测项目	实验室平行样结果 (mg/m³)	相对偏差	允许相对偏差 (%)	判定
		0.46 0.51	5,2	≤20	合格
		0.69	2.1	≤20	合格
		0.70	2.1	≤20	合格
		0.67 0.63	3.1	≤20	合格
		0.63 0.66	2.3	≤20	合格
		0.17 0.15	6.2	≤20	合格
		0.17 0.14	9.7	≥20	合格
K'		0.54 0.51	2.9	≤20	合格
2025/06/04	非甲烷总烃	0.39 0.41	2.5	≤20	合格
2025/06/04	(无组织)	0.47 0. 51	4.1	≤20	合格
		0,46	6.1	≤20	合格
		0.74 0.75	0.7	≤20	合格
		0.76 0.68	5.6	≤20	合格

备注:①非甲烷总烃(有组织)平行样测定结果允许相对偏差参考《固定污染源废气总烃、甲烷和非甲烷总烃的测定 气相色谱法》HJ 38-2017中要求。

②非甲烷总烃(无组织)平行样测定结果允许相对偏差参考《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017)中要求。

表 8.2-6 废气平行样测试结果(续表)

采样日期	检测 项目	监测点位	现场平行样结果 (mg/m³)		相对偏差(%)	允许相对偏差(%)	判定
	非甲烷	厂区内无组 织废气 2 号	仪器 1 仪器 2	1.26	0.4	≤5.0	合格
2025/06/03	总烃 (无组织)	续级气2号 楼3层生产 车间门口监	仪器 1 仪器 2	1.21	0.0	≤5.0	合格
	(九组织)	测点 5#	仪器 1 仪器 2	1.21	0.4	≤5.0	合格
	非甲烷	厂区内无组	仪器1	1.24	0.0	≤5.0	合格

采样日期	检测 项目	监测点位	现场平行 (mg/		相对偏差(%)	允许相对 偏差(%)	判定
	总烃	织废气1号	仪器2	1.24			
	(无组织)	楼2层生产车间门口监	仪器 2	1.28	0.0	≤5.0	合格
		测点 6#	仪器 1 仪器 2	1.32	0.4	≤5.0	合格
	die males	厂区内无组	仪器 1 仪器 2	1.25 1.24	0.4	≤5.0	合格
	非甲烷 总烃 (无组织)	测点 5#	仪器 1 仪器 2	1.28 1.28	0.0	≤5.0	合格
2025/07/04			仪器 1 仪器 2	1.32 1.31	0.4	≤5.0	合格
2025/06/04			仪器 1 仪器 2	1.29 1.29	0.0	≤5.0	合格
	非甲烷	楼 2 层生产	仪器 1 仪器 2	1.34	0.4	≤5,0	合格
		仪器 1 仪器 2	1.30	0.4	≤5.0	合格	

备注: 平行样测定结果允许相对偏差参考《环境空气和废气总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》HJ 1012-2018 中要求。

表 8.6-7 主要监测仪器校准情况一览表

采样日	仪器名称及	(V) FIR (P) C	仪器	监测前	相对	监测后	相对
期	型号	仪器编号	设定流量 (L/min)	校准器流 量(L/min)	误差 (%)	校准器流 量(L/min)	误差 (%)
			10	10.2	2.0	10.2	2.0
	上次見細動	C014-03	20	19.8	1.0	20.3	1.5
	大流量烟尘 (气)测试		30	29.9	0.3	29.9	0.3
	/YQ3000-D		10	9.94	0.6	9.87	1.3
2025/06/	/1 Q3000-D	C014-04	20	19.9	0.5	19.7	1.5
03			30	30.4	1.3	29.7	1.0
		C038-01A		0.098	2.0	0.098	2.0
	双路大气采	C038-02A	0.1	0.098	2.0	0.101	1.0
	样/TQ-1000	C038-03A	0.1	0.103	3.0	0.102	2.0
		C038-04A		0.099	1.0	0.097	3.0
			10	9.93	0.7	10.2	2.0
		C014-03	20	20.1	0.5	20.3	1.5
2025/06/	大流量烟尘 (气)测试		30	30.3	1.0	30.3	1.0
2025/06/	/YQ3000-D		10	10.1	1.0	10.3	3.0
04	/1Q3000-D	C014-04	20	19.7	1.5	20.2	1.0
			30	30.4	1.3	30.4	1.3
	双路大气采	C038-01A	0.1	0.101	1.0	0.101	1.0

样/TQ-1000	C038-02A	0.102	2.0	0.099	1.0
	C038-03A	0.098	2.0	0.102	2.0
	C038-04A	0.100	0.0	0.098	2.0

表 8.6-8 仪器设备检定/校准信息一览表

序号	仪器名称及型号	内部编号	类型	有效日期
1	便携式气体、粉尘、烟尘采样仪综合 校准装置/ZR-5410A	C019	校准	2025/07/27
2	大流量烟尘(气)测试仪/YQ3000-D	C014-03	校准	2025/07/27
	人加重烟主(19 测试仪 1Q3000-D	C014-04	校准	2025/07/27
		C038-01	校准	2026/02/20
3	双路女气采样器/TQ-1000	C038-02	校准	2026/02/20
3	XIII X (XIII 411/1Q-1000	C038-03	校准	2026/02/20
		C038-04	校准	2026/02/20
4	便捷式风速仪/PLC-16025	C020-02	校准	2025/08/04
5	数字温湿度大气压力计/DYM3-02	C023-02	校准	2025/08/04
6	污染源真空箱采样器/MH3051	C009-01		1
0	75条/原具工相木件品/MI13031	C009-02	1	/
	便携式非甲烷总烃气相色谱仪	C051-01	校准	2026/05/18
8	/GC2030Portable	C051-02	校准	2026/05/18
9	电子天平/ATX224	\$013-01	校准	2025/07/27
10	气相色谱仪/GC9720	S004-01	校准	2025/07/27
11	气相色谱仪/GC9790 II	S059	校准	2025/07/27
12	气相色谱仪/9790 Ⅰ	S004-02	校准	2025/07/27

8.3 废水分析过程中的质量保证和质量控制

表 8.3-1 样品保存方式一览表

序号	检测项目	固定剂	容器材料	保存温度	保存时间
1	化学需氧量	H ₂ SO ₄ , pH≤2	玻璃瓶	冷藏	2d
2	五旦生化需氧量	/	玻璃瓶	冷藏、避光	12h
3	悬浮物	/	玻璃瓶	冷藏、避光	7d
4	氨氮	H_2SO_4 , $pH \le 2$	玻璃瓶	冷藏	7d

表 8.3-2 质控措施具体实施情况一览表

	项目	見自称		实验室 平行 (个)	质控样	现场空白(个)	实验室 空白 (个)	运输空白(个)	全程序 空白 (个)	穿透试 验(个)
	pH 值	8	2	/	2	/		/	2	1
废水	化学需氧量	8	2	2	2	1	/	/	2	/
	五日生化需 氧量	8	/		2	/	2	/	2	/

项目	基础样 品总数 (个)	现场平 行(个)	实验室 平行 (个)	质控 样 (个)	现场空 白(个)	实验室 空白 (个)	运输空白(个)	全程序 空白 (个)	穿透试验(个)
悬浮物	8	1			/	/	/	2	/
氨氮	8	2	2	2	1	4	/	2	/

表 8.3-3 质控样测试结果

检测项目	内部编号	证书编号	标准值范围	实测结果	单位	判定
pH 值	8Y-24-097	BY100053	7.06±0.05	7.05	无量纲	合格
рн	SY-24-097	BY100053	7.06±0.05	7.08	无量纲	合格
化学需氧量	8Y-24-175	BY017667	50.3±3.3	50.1	mg/L	合格
化子而氧里	SY-24-175	BY017667	50.3±3.3	51.7	mg/L	合格
五日生化需氧量		/	210±20	211	mg/L	合格
(葡萄糖谷氨酸)	1	/	210±20	212	mg/L	合格
有信	SY-25-021	BW0598	8.36±0.42	8.25	mg/L	合格
一家康	SY-25-021	BW0598	8.36±0.42	8.30	mg/L	合格

表 8.3-4 废水空白样测试结果

检测项目	检测	结果	**	判定
位例切日	实验室空白	全程序空白	単位	刊足
pH 值	/	6.8	无量纲	合格
pn III.	/	6.8	无量纲	合格
悬浮物	1	4L	mg/L	合格
心行物	/	AL/	mg/L	合格
化学需氧量	1	4L	mg/L	合格
化于而丰里		4L	mg/L	合格
五日生化需氧量	0.5L	0.5L	mg/L	合格
五口工化而利里	0.5L	0.5L	mg/L	合格
	0.025L	0.025L	mg/L	合格
氨氮	0.025L	0.025L	mg/L	合格
安汉	0.025L	/	mg/L	合格
	0.025L	1	mg/L	合格

表 8.3-5 废水平行样测试结果

采样日期	检测项目	现场平行 样结果 (mg/L)	相对偏差(%)	允许相 对偏差 (%)	判定	实验室平 行样结果 (mg/L)	相对偏差(%)	允许相 对偏差 (%)	判定
	pH 值	7.6 7.6	0.0pH	0.1pH	合格		/	/	/
2025/06/03	化学需氧 量	165 169	1.2	≤10	合格	165 161	1.2	≤10	合格
	氨氮	3.70	5.6	≤10	合格	3.70 3.40	4.2	≤10	合格

	II /古	7.7	0.0-11	0.1-11	A 14	/	,	,	,
	pH 值	7.7	0.0pH	0.1pH	合格	1	/	/	/
2025/06/04	化学需氧	163	2.2	710	7 14	163	1.2	-10	合格
2025/06/04	量	156	2.2	≤10	合格	167	1.2	≤10	口俗
	复复	3.19	1.0		人拉	3.19	0.0	<10	Δ.W
	氨氮	3.31	1.8	≤10	合格	3.25	0.9	≤10	合格

备注: pH 值允许相对偏差参考《水质 pH 值的测定 电极法》HJ1147-2020; 其余检测项目参考《固定污染源监测 质量保证与质量控制技术规范(试行)》HJ/T 373-2007。

表 8.3-6 主要监测仪器校准情况一览表

采样日期	仪器名称及型号	仪器编号	标准缓冲 溶液标准	测试标准值	差值	合格与否
2025/06/03	防水笔式高精度 酸碱度/温度计 /pH-100	C025-02	6.86	6.88	0.02	倉格
2023/06/03	防水笔式高精度 酸碱度/温度计 /pH-100	C025-02	9.18	9.17	0.01	合格
2025/06/04	防水笔式高精度 酸碱度/温度计 /pH-100	C025-02	6.86	6.85	0.01	合格
2023/00/04	防水笔式高精度 酸碱度/温度计 /pH-100	C025-02	9.18	9.19	0.01	合格

备注: pH 计在使用前用标准缓冲溶液校准, 仅器的示值与标准缓冲溶液的 pH 值之差应≤0.05 个 pH 单位。

表 8.3-7 仪器设备检定/校准信息一览表

序号	仪器名称及型号	内部编号	类型	有效日期
1	防水笔式高精度酸碱度/温度计/pH-100	C025-02	校准	2025/08/04
2	电子天平/ATX224	S013-01	校准	2025/07/27
3	恒温恒湿生化培养箱/SPX-150B-Z	S020-03	校准	2025/07/27
4	紫外可见分光光度计/UV-2000	S122	校准	2025/07/27

8.4 噪声分析过程中的质量保证和质量控制

表 8.4-1 声级计校准质控结果

采样日期	声级计校 准器	仪器编号	监测前校 准值、dB(A)	监测后校准 值 dB(A)	差值 dB(A)	合格 与否
2025/06/03	声级校准器 /AWA6021A	C055-01	93.8	93.8	0.0	合格
2025/06/04	声级校准器 /AWA6021A	C055-01	93.7	93.8	0.1	合格

备注: 声级计在使用前后用声校准器进行校准, 使用前后测定声校准器读数差应不大于0.5

dB(A).

8.5 监测分析方法

本项目废气、废水和噪声采样检测分析方法详见表 8.5-1。

表 8.5-1 项目检测分析方法、使用仪器及检出限一览表

类型	检测项目	检测方法	标准编号	分析仪器	方法检出限/ 检出范围
	pH 值.	単极法	НЈ 1147-2020	防水笔式高精度酸 碱度/温度计/pH-100	0~14 (无量纲)
	化学需氧量	重铬酸盐法	HJ 828-2017	滴定管	4mg/L
废水	五日生化 需氧量	稀释与接种法	НЈ 505-2009	生化培养箱 /SPX-150B-Z	0.5mg/L
	悬浮物	重量法	GB 11901-1989	电子天平/ATX224	4mg/L
	氨氮	纳氏试剂分光 光度法	НЈ 535-2009	紫外可见分光 光度计/UV-2000	0.025mg/L
有组	VOCs	气相色谱法	DB44/815-2010	气相色谱仪 /GC9720	0.01mg/m ³
织废气	非甲烷总烃	气相色谱法	НЈ 38-2017	气相色谱仪 /GC9790 II	0.07mg/m ³
(臭气浓度	三点比较式臭 袋法	HJ 1262-2022	_	
	臭气浓度	三点比较式臭 袋法	ну 1262-2022		10 (无量纲)
				气相色谱仪	
无组		气相色谱法	HJ 38-2017	/GC9790 II	0.07mg/m ³
织废	非甲烷总烃	MAYJE		气相色谱仪/9790 II	Y
气	4F 1 //U/C//11	便携式监测仪		便携式非甲烷总烃	
		技术要求及检	HJ 1012-2018	气相色谱仪	0.07mg/m ³
		测方法		/GC2030Portable	
1	总 VOCs	气相色谱法	DB44/815-2010	气相色谱仪	0.01mg/m ³
				/GC9720	
噪声	工业企业厂 界环境噪声	《工业企业厂 界环境噪声排 放标准》	GB 12348-2008	多功能声级计 /AWA5688	7 -

9 验收监测结果及分析

9.1 验收监测期间工况

本项目广东景和检测有限公司于 2025 年 6 月 3 日~2025 年 6 月 4 日对本项目废水、废气、噪声进行验收检测(检测报告编号: GDJH2505009EB)。验收监测采样期间建设项目生产设备、废水、废气处理设施等设备均正常运作,生产状况基本稳定、生产负荷达到 93%,符合监测验收标准要求,废水、废气、噪声的监测数据有效。具体详见下表。

验收监测期间实际产能 环评设计年 环评设计日 (t/d)生产工况 产能 (吨) 产能 (吨) 2025.6.4 2025.6.3 防静电屏蔽袋 1.085 350 1.167 1.085 93% 防静电铝箔防潮袋 1.286 1.286 415 1.383 93% 1.395 铝塑包装卷材 1.500 1.395 93% 450 0.333 食品包装膜/袋 100 0.310 0.310 93% 日化品包膜/袋 100 0.333 0.310 0.310 93% EPE 防静电间纸 487 1.509 93% 1.509 企业全年生产300天。

表 9.1-1 验收监测期间生产工况负荷表

9.2 验收监测结果及评价

9.2.1 废气监测结果及评价

本项目废气监测结果详见下表。

表 9.2-1 有组织废气检测结果

采样点位	检测项目		检测结果					达标
木件从位	似例为日	第一次	第二次	第三次	第四次	最大值	限值	情况
复合、印刷、 涂布、烘干、	标干流量 (m³/h)	30612	30982	30125	31099	31099	10 1	_
制袋工序废气处理前监测口(气-01)(2025/06/03)	臭气浓度 (无量纲)	3548	3090	4168	4168	4168		_

采样点位	检测项目			检测结果			排放	达标
木件总位	似例纵日	第一次	第二次	第三次	第四次	最大值	限值	情况
复合、印刷、	标干流量	22722	22224	20750	22007	22750		
涂布、烘干、	(m^3/h)	32722	32224	32758	32007	32758	_	_
制袋工序废								
气处理后监	臭气浓度	75.10		170	620	(20	2000	14.4-
测口 (气-01)	(无量纲)	549	630	478	630	630	2000	达标
(2025/06/03)							o:	
复合、印刷、	标干流量	21114	30518	30951	30684	31114		
涂布、烘干、	(m^3/h)	31114	30318	30931	30084	31114		
制袋工序废								17
气处理前监	臭气浓度	3548	4168	4168	3548	4168		
测口 (气-01)	(无量纲)	3346	4100	4100	3346	4100		77
(2025/06/04)								
复合、印刷、	标干流量	33108	32280	32759	32458	33108		
徐布、烘干、	(m^3/h)	33108	32280	32/39	32438	33108		_
制袋工序废								
气处理后监	臭气浓度	170	416	116	251	478	2000	}++=
测口 (气-01)	(无量纲)	478	410	416	354	4/8	2000	达标
(2025/06/04)								

备注: 1."—"表示该标准中无限值要求或无需填写:

2.臭气浓度执行《恶臭污染物排放标准》(GB 14554-93)表 2 恶臭污染物排放标准值。

表 9.2-1 有组织废气检测结果 (续表)

(单位:排放浓度: mg/m^3 ,排放速率:kg/h,标干流量: m^3/h)

四共上片	采样点位 检测项目			检测	结果	34077 - 20 3000 - 10	排放	达标
木件总位	122.例	100日	第一次	第二次	第三次	均值	限值	情况
	标干	流量	30612	30982	30125	30573	_	
	总 VOCs	排放浓度	20.0	18.9	19.0	19.3		
	AS VOCS	排放速率	0.612	0.586	0.572	0.590		
		样品 1 排 放浓度	16.8	16.8	16.6	16.7		
复合、印刷、涂布、烘干、	5	样品 1 排 放速率	0.514	0.520	0.500	0.511		_
制袋工序废 气处理前监	77	样品 2 排 放浓度	16.5	16.5	16,4	16.5		_
测口 (气-01)	非甲烷 总烃	样品 2 排 放速率	0.505	0.511	0.494	0.504	_	_
(2025/06/03)		样品 3 排 放浓度	16.6	16.9	16.8	16.8	_	_
		样品 3 排 放速率	0.508	0.524	0.506	0.514		
		样品 4 排 放浓度	17.0	16.7	17.0	16.9	3—3	_

					4				
					1				
采样点位	松油	项目		检测	结果		排放	达标	
八十二世	114.1%	S234-1923/23V	第一次	第二次	第三次	均值	限值	情况	
		样品 4 排 放速率	0.520	0.517	0.512	0.517	_	_	
		平均排放浓度	16.7	16.7	16.7	16.7	_	_	
		平均排放速率	0.511	0.517	0.503	0.511	_	-	1
	标干	流量	32722	32224	32758	32568	-		
	VOCs	排放浓度	2.70	2.75	2.70	2.72	120	达标	
	, , , ,	排放速率	8.83×10 ⁻²	8.86×10 ⁻²	8.84×10 ⁻²	8.86×10 ⁻²	2.55	达标	
		样品 1 排 放浓度	2.66	2.68	2.65	2.66	60	达标	
		样品 1 排放速率	8.70×10 ⁻²	8.64×10 ⁻²	8.68×10 ⁻²	8,66×10 ⁻²		a.—a	
复合、印刷、		样品 2 排 放浓度	2.69	2.67	2.64	2.67	60	达标	
涂布、烘干、 制袋工序废		样品 2 排 放速率	8.80×10 ⁻²	8.60×10 ⁻²	8.65×10 ⁻²	8.70×10 ⁻²	_	-	
大 处理后监 测口	非甲烷	样品 3 排 放浓度	2.65	2.66	2.68	2.66	60	达标	
(气-01) (2025/06/03)	总烃	样品 3 排 放速率	8.67×10-2	8.57×10 ⁻²	8.78×10 ⁻²	8.66×10 ⁻²	1—	_	A
		样品 4 排 放浓度	2.69	2.69	2.68	2.69	60	达标	
		样品 4 排 放速率	8.80×10 ⁻²	8.67×10 ⁻²	8.78×10 ⁻²	8.76×10 ⁻²	_	3	
		平均排放 浓度	2.67	2.68	2.66	2.67	60	达标	2
		平均排放速率	8.74×10 ⁻²	8.64×10 ⁻²	8.71×10 ⁻²	8.70×10 ⁻²			
	标干	流量	31114	30518	30951	30861		_	
	总 VOCs	排放浓度	20.5	18.8	18.8	19.4	(3)	_	
复合、印刷、		排放速率	0.638	0.574	0.582	0.599		1-1	
涂布、烘干 制袋工序废		样品 1 排 放浓度	17.7	17.5	17.2	17.5	_	_	
气处理前监测口	非甲烷	样品 1 排 放速率	0.551	0.534	0.532	0.540	_	1—	
(气-01) (2025/06/04)	总烃	样品 2 排 放浓度	17.8	17.6	17.4	17.6	_	_	
		样品 2 排放速率	0.554	0.537	0.539	0.543	_	_	
		样品 3 排	17.3	17.7	17.8	17.6	_	-	

				检测	结果		排放	达标
采样点位	检测	项目	第一次	第二次	第三次	均值	限值	情况
		放浓度						00000900000
		样品 3 排 放速率	0.538	0.540	0.551	0.543	_	_
		样品 4 排 放浓度	17.4	17.3	18.0	17.6	_	1-1
		样品 4 排 放速率	0.541	0.528	0.557	0.543	_	1 —
		平均排放浓度	17.6	17.5	17.6	17.6	A	
		平均排放 速率	0.548	0.534	0.545	0.543		X
	标于	流量	33108	32280	32759	32716		
	总 VOCs	排放浓度	2.70	2.77	2.71	2.73	120	达标
	AZ TOCS	排放速率	8.94×10 ⁻²	8.94×10 ⁻²	8.88×10 ⁻²	8.93×10 ⁻²	2.55	达标
		样品 1 排 放浓度	2.66	2.67	2.71	2.68	60	达标
Y		样品 1 排 放速率	8.81×10 ⁻²	8.62×10 ⁻²	8.88×10 ⁻²	8.77×10 ⁻²	_	_
复合、印刷、		样品 2 排 放浓度	2.64	2.70	2.66	2.67	60	达标
涂布、烘干、 制袋工序废		样品 2 排 放速率	8,74×10 ⁻²	8.72×10 ⁻²	8.71×10 ⁻²	8.74×10 ⁻²	1-1	::
气处理后监 测口	非甲烷	样品 3 排 放浓度	2.65	2.66	2.69	2.67	60	达标
(气-01) (2025/06/04)	总烃	样品 3 排 放速率	8.77×10 ⁻²	8.59×10 ⁻²	8.81×10 ⁻²	8.74×10 ⁻²	_	
		样品 4 排放浓度	2.68	2.68	2.64	2.67	60	达标
12		样品 4 排 放速率	8.87×10 ⁻²	8.65×10 ⁻²	8.65×10 ⁻²	8.74×10-2		
	14	平均排放 浓度	2.66	2.68	2.68	2.67	60	达标
		平均排放 速率	8.81×10 ⁻²	8.65×10 ⁻²	8.78×10 ⁻²	8.74×10 ⁻²	7_	-

备注: 1."—"表示该标准中无限值要求或无需填写;

2.非甲烷总烃执行《印刷工业大气污染物排放标准》(GB 41616-2022)中表 1 大气污染物排放限值与《合成树脂工业污染物排放标准》(GB 31572-2015)(含 2024 年修改单)表 5 大气污染物特别排放限值的较严值; VOCs 执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表 2 凹版印刷第 II 时段排放限值(排气筒高度未高出周围 200m 半径范围最高建筑 5m 以上,最高允许排放速率按标准限值的 50%执行)。

表 9.2-2 废气处理设施处理效率核算结果一览表

日期	污染物	处理前排放速率 (kg/h)	处理后排放速 率(kg/h)	处理效 率%	环评报告处 理效率%
	臭气浓度	4168(无量纲)	630 (无量纲)	84	80
2025.6.3	总 VOCs	0.590	8.86×10 ⁻²	83	80
	非甲烷总烃	0.511	8.70×10 ⁻²	83	80
	臭气浓度	4168	478	88	80
2025.6.4	₿ VOCs	0.599	8.93×10 ⁻²	85	80
	非甲烷总烃	0.543	8.74×10 ⁻²	84	80

备注: ①臭气浓度取每天 4 次监测值最大值;总 VOCs、非甲烷总烃取每天 3 次平均值。②处理效率=(处理前排放速率-处理后排放速率/处理前排放速率) ×100%,臭气浓度为无量纲。

根据项目环评批复,本项目复合、印刷、涂布、烘干、制袋工序废气处理效率要求,但根据环评报告分析,采用"二级活性炭吸附装置"废气治理设施对臭气浓度、有机废气(总 VOCs、非甲烷总烃)处理效率均为80%。根据上表核算,本项目臭气浓度、有机废气实际处理效率均可满足环评报告分析处理效率要求。

表 9.2-3 厂界无组织废气检测结果

上級の機能を表現のです。		12 7.2-3	7 71 74	山外 人	
1 0.32 10 2 0.36 10 3 0.36 10 4	佐湖 上 -	□	alacti Vier	检测	结果
ファ 子 近 织 皮 气 上 风 向 参照 点 1 # 2025/06/04	监视总征	术件口别	列仪	总 VOCs(mg/m³)	臭气浓度 (无量纲)
ア界无组织废气 上风向参照点 1# 2025/06/04 2025/06/04 10 0.35 10 10 10 10 10 10 10 10 10 10 10 10 10			1	0.32	<10
ファ 子 近 织 皮 气 上 风 向 参照点 1# 2025/06/04 2025/06/04 10 0.35 10 10 10 10 10 10 10 10 10 10 10 10 10		2025/06/02	2	0.36	10
上风向参照点 1# 1 0.35 <10		2023/06/03	3	0.36	<10
2025/06/04 2 0.36 10 3 0.34 10 4 — <10	厂界无组织废气		4	(=)	10
2025/06/04 3 0.34 10 4 — <10	上风向参照点 1#		1	0.35	<10
2025/06/03 1		2025/06/04	2	0.36	10
2025/06/03 1 0.42 19 2 0.44 17 17 3 0.47 13 14 F风向监控点 2# 1 0.56 16 2 0.50 18 16 3 0.41 12 12 4 - 13 13 F风向监控点 3# 2025/06/03 16 5 0.49 16 16 1 0.49 16 16 1 0.49 16 11		2023/00/04	3	0.34	10
2025/06/03 2 0.44 17 3 0.47 13 4 — 14 F风向监控点 2# 1 0.56 16 2 0.50 18 3 0.41 12 4 — 13 F风向监控点 3# 2025/06/03 2 0.49 16 F风向监控点 3# 2025/06/03 2 0.45 11			4	_	<10
ファス组织度气 下风向监控点 2# 2025/06/04 2025/06/04 10 0.56 16 16 16 16 17 17 13 18 18 18 18 18 18 18 18 18 18 18 18 18			1	0.42	19
7 界无组织废气 3 0.47 13 1 下风向监控点 2# 1 0.56 16 2 0.50 18 3 0.41 12 4 - 13 「界无组织废气 0.49 16 下风向监控点 3# 2025/06/03 2 0.45 11		2025/06/03	2	0.44	17
下风向监控点 2# 1 0.56 16 2 0.50 18 3 0.41 12 4 — 13 厂界无组织废气 0.49 16 下风向监控点 3# 2025/06/03 2 0.45 11		2023/00/03	3	0.47	-13
2025/06/04 2 0.50 18 3 0.41 12 4 — 13 厂界无组织废气 下风向监控占 3# 2025/06/03 2 0.45 11	厂界无组织废气		4	4	14
2025/06/04 3 0.41 12 4 — 13 厂界无组织废气 1 0.49 16 下风向临控点 3# 2025/06/03 2 0.45 11	下风向监控点 2#		1	0.56	16
3 0.41 12 13 13 13 15 15 16 15 16 15 16 17 17 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18		2025/06/04	2	0.50	18
厂界无组织废气 下风向监控占 3# 2025/06/03 2 0.45 11		2023/00/04	3	0.41	12
			4	-/	13
下风向监控点 3# 2025/06/03 2 2 0.45 11	厂界		1	0.49	16
3 0.43		2025/06/03	2	0.45	11
	下外问血江点3#	5	3 4	0.43	11

		4		15
		1	0.39	15
	2025/06/04	2	0.42	17
	2025/06/04	3	0.44	19
		4		16
		1	0.47	13
	2025/06/02	2	0.50	14
	2025/06/03	3	0.50	15
厂界无组织废气		4	—:	18
下风向监控点 4#		1	0.46	14
	2025/06/04	2	0.43	11
	2025/06/04	3	0.44	14
		4	<u></u>	17
	最太值		0.56	19
	执行标准限值		2.0	20
	达标 <mark>情</mark> 况		达标	送标
The second secon	and the second s			

备注: 1,"—"表示无需填写;

2.VOCs 执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)中表 3 无组织排放 监控点浓度限值; 臭气浓度执行《恶臭污染物排放标准》(GB 14554-93)表 1 厂界新扩改 建二级标准。

表 9.2-4 厂界无组织废气检测结果(续表)

		频	1/1		检测结果		
监测点位	采样日期	次		非甲:	烷总烃(mg	/m³)	
		1	样品1	样品 2	样品3	样品4	均值
		1	0.16	0.17	0.14	0.18	0.16
	2025/06/03	2	0.12	0.18	0.15	0.17	0.16
厂界无组织废 气上风向参照		3	0.16	0.16	0.18	0.14	0.16
点 1#		1	0.16	0.15	0.19	0.16	0.16
All Th	2025/06/04	2	0.13	0.15	0.14	0.14	0.14
17		3	0.16	0.16	0.18	0.16	0.16
		1	0.57	0.56	0.52	0.51	0.54
	2025/06/03	2	0.50	0.54	0.53	0.55	0.53
万界无组织废		3	0.47	0.54	0.48	0.52	0.50
气下风向监控 点 2#		1	0.53	0.48	0.47	0.47	0.49
A. 2#	2025/06/04	2	0.50	0.52	0.48	0.50	0.50
		3	0.47	0.47	0.53	0.51	0.50
		1	0.32	0.31	0.33	0.32	0.32
厂界无组织废	2025/06/03	2	0.34	0.33	0.34	0.38	0.35
气下风向监控 点 3#		3	0.33	0.36	0.32	0.34	0.34
从 3#	2025/06/04	1	0.35	0.38	0.47	0.40	0.40
				1			

						50	
		2	0.37	0.39	0.39	0.37	0.38
		3	0.40	0.36	0.38	0.43	0.39
		1	0.41	0.44	0.43	0.46	0.44
	2025/06/03	2	0.46	0.42	0.46	0.44	0.44
厂界无组织废 气下风向监控		3	0.56	0.49	0.49	0.48	0.50
点 4#	5	1	0.52	0.49	0.53	0.51	0.51
7.1.7.17	2025/06/04	2	0.55	0.52	0.50	0.51	0.52
		3	0.52	0.48	0.51	0.49	0.50
	最大值				0.53	0.55	0.54
执行	宁标准限值				4.0		
, t	达标情况				达标		

备注: 1."一"表示无需填写;

2. 执行《合成树脂工业污染物排放标准》(GB 31572-2015)(含 2024 年修改单)及表 9 企业边界大气污染物排放浓度限值。

表 9.2-5 厂区内无组织废气检测结果

		频	检测结果									
监测点位	采样日期	次	手 田 停 日 (Mg/mg/m3)									
		111	样品1	样品 2	样品3	样品 4	均值					
		1	0.69	0.68	0.71	0.70	0.70					
厂区内无组织	2025/06/03	2	0.69	0.71	0.74	0.67	0.70					
废气2号楼3层		3	0.67	0.74	0.73	0.72	0.72					
生产车间门口		1	0.76	0.75	0.75	0.75	0.75					
监测点 5#	2025/06/04	2	0.76	0.75	0.74	0.74	0.75					
		3	0.68	0.75	0.73	0.77	0.73					
		1	0.69	0.66	0.65	0.65	0.66					
厂区内无组织	2025/06/03	2	0.65	0.66	0.67	0.68	0.66					
废气1号楼2层		3	0.64	0.70	0.71	0.64	0.67					
生产车间门口		1	0.75	0.71	0.72	0.67	0.71					
监测点 6#	2025/06/04	2	0.72	0.75	0.75	0.74	0.74					
		3	0.75	0.74	0.76	0.73	0.74					
	0.76	0.75	0.76	0.77	0.75							
执行	标准限值		6									
艾	添标情况		达 标									

备注: 1:"一"表示无需填写; 该检测结果的检测方法为气相色谱法;

2.执行《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值(监控点处 1h 平均浓度值)。

表 9.2-6 厂区内无组织废气检测结果(续表)

监测点位	采样日期	频次	检测结果 非甲烷总烃(mg/m³)
厂区内无组织废气 2 号楼 3		1	1.26
层生产车间门口监测点 5#	2025/06/03	2	1.21
层土厂干미门口监测点 5#		3	1.22

	1	1.24	
2025/06	5/04 2	1.28	
	3	1.32	
		1.24	
2025/06	/03	1.28	
厂区内无组织废气1号楼2	3	1.32	
层生产车间门口监测点 6#	1	1.29	
2025/06	/04 2	1.34	
	3	1.30	
最大值		1.34	
执行标准限值		20	
达标情况		达标	11/2
HAN A CONTRACTOR WHAT	4 14 14 4 14 14 14 14 14 14 14 14 14 14	esta- bita serial	

备注: 1. "一"表示无需填写;该检测结果的检测方法为便携式检测法; 2.执行《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值(监控点处任意一次浓度值)。

根据以上废气检测结果,本项目有组织排放的非甲烷总烃达到《印刷工业大气污染物排放标准》(GB41616-2022)表 1 大气污染物排放限值及《合成树脂工业污染物排放标准》(GB31572-2015 及 2024 年修改单)表 5 大气污染物排放限值较严者要求;总 VOCs 达到广东省《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表 2 凹版印刷第 11 时段排放限值要求;臭气浓度达到《恶臭污染物排放标准》(GB14554-93)中表 2 恶臭污染物排放标准值。

厂界无组织排放的挥发性有机物 (总 VOCs) 达到广东省《印刷行业挥发性有机化合物排放标准》 (DB44/815-2010) 中表 3 无组织排放监控点浓度限值要求;非甲烷总烃达到《合成树脂工业污染物排放标准》 (GB31572-2015 及 2024年修改单)表 9 企业边界大气污染物排放浓度限值要求;臭气浓度达到《恶臭污染物排放标准》 (GB14554-93)表 1 恶臭污染物厂界标准值中二级新、扩、改建标准限值要求。

厂区内无组织排放的有机废气满足广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCS 无组织排放限值要求。

9.2.2 废水排放监测结果

本项目废水监测结果详见下表 9.2-7。

表 9.2-7 项目生活污水检测结果

			-						
			枹	金测结果				执行	达标
采样点位	检测因子	第一	第二	第三	第四	均值/	单位	标准	
		次	次	次	次	范围		限值	情况
	pH 值	76	7.7	7.8	7.7	7.6~7.	无量	6~9	达标
园区生活污	pn 1a	7.6	1./	1.0	1.7	8	纲	0~9	心你
水处理后排	五日生化需	53.6	57.2	55.2	59.0	56.2	ma/I	300	达标
放口	氧量	33.0	31.2	33.2	39.0	30.2	mg/L	300	之你
(水-01)	化学需氧量	166	158	174	155	163	mg/L	500	达标
(2025/06/03)	悬浮物	98	94	103	91	96	mg/L	400	达标
	氨氮	3.43	3.42	3.45	3.48	3.44	mg/L		
	pH值	7.7	7.7	7.8	7.8	7.7~7.	无量	6~9	达标
园区生活污	pri	1.1	7.7	7.0	7.0	8	纲	029	1244
水处理后排	五日生化需	54.0	60.4	58.0	52.8	56.3	mg/L	300	达标
放口 放口	氧量	34.0	00.4	36.0	32.0	30.3	mg/L	300	赵柳
(zk-01)	化学需氧量	160	176	171	174	170	mg/L	500	达标
(2025/06/04)	悬浮物	106	98	101	112	104	mg/L	400	达标
	氨氮	3.26	3.43	3.51	3.55	3.44	mg/L	_	_

备注: 1."一"表示该无限值要求或无需填写;

2.执行广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准。

备注:由于厂区生活污水管道及三级化粪池为地埋结构,无法布设处理前监测点位,且本项目无生活污水处理效率要求,因此,因此本次验收不对生活污水处理前进行采样。

根据上表检测结果,本项目生活污水经园区三级化粪池处理后可满足广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准要求。

9.2.3 厂界噪声排放监测结果

本项目厂界噪声监测结果详见下表。

表 9.2-8 项目厂界噪声排放监测结果

17			执行标准限			
序号 采样点位		2025/	/06/03	2025/	06/04	值 Leq[dB
BAY.		昼间	夜间	昼间	夜间	(A)]
1	厂界西南侧外 1 米处 1#	61	48	60	48	
2	厂界西北侧外 1 米处 2#	59	46	59	48	昼间: 65
3	厂界东北侧外 1 米处 3#	62	48	63	46	夜间: 55
4	厂界东南侧外1米处4#	59	46	60	46	
备注: 执行	《工业企业厂界环境噪声排	放标准》	(GB 123	348-2008)	3 类标准	0

根据上表监测结果可知, 本项目厂界噪声满足《工业企业厂界环境噪声排放

标准》(GB12348-2008) 3 类标准,即:昼间≤65dB(A)、夜间≤55dB(A)。

9.2.4 污染物排放总量核算

(1) 废气

根据广州开发区行政审批局关于《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表的批复》(穗开审批环评〔2025〕73号),本项目废气污染物无总量控制要求,根据环评报告总量控制章节,本项目有机废气排放量为0.391t/a,其中有组织0.232t/a。

根据前文废气验收监测结果,本项目有机废气排放量核算情况详见下表

核算排 折算 环评核算 排放速率 排放时 环评批复 排放形式 放量 100%工 排放量 间/h 许可总量 (kg/h) (t/a)况排放量 (t/a) 有组织 0.089 0.2297 2400 0.2136 0.232 无 (气-01) 0.159 0.159 0.159 无组织 / 无 0.3726 合计 0.3887 0.391

表 9.2-9 本项目废气污染物排放量总量核算结果

0.3887t/a<0.391t/a, 小于其环评报告核算的排放量。

(2) 废水

根据《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》及 其批复(穗开审批环评〔2025〕73号),本项目外排废水为生活污水,经三级 化粪池预处理达标后排入市政污水管网,进入永和水质净化厂处理无废水排放总 量控制要求,因此,本项目验收监测不核算生活污水污染物排放量。

②核算排放量=排放速率×工作时间×10⁻³,取检测报告中2天三次平均值再取平均值计算。由上表核算结果可知,本项目验收监测期间满负荷工况下有机废气排放量为

10 环境管理检查

10.1 环保审批手续及"三同时"执行情况

《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》于 2025年4月25日通过广州开发区行政审批局审批(批复文号: 穗开审批环评 (2025)73号)。

本项目执行了国家有关建设项目环保审批手续及"三同时"制度。环评、环保设计手续齐全,环保设施与主体工程同时设计、同时施工、同时投入使用。按照建设项目环境影响评价文件及其批复文件的相关要求废气、噪声、固体废物的污染防治措施建设,并投入使用。项目投入使用后,认真落实了各项污染防治措施,未对周边环境及居民造成影响,试运行期间并无发生污染事故及环保投诉事项。

10.2 排污口规范化的检查结果

经现场检查,本项目已按《关于印发广东省污染源排污口规范化设置导则的通知》(粤环〔2008〕42号)要求设置废气排放口、一般工业固体废物及危险废物暂存间。

10.3 固体废物的排放、类别、处理和综合利用情况

本项目废包装材料、边角料和次品收集后交给资源回收单位回收处理;旧印版由供应商回收、重新制版,用于生产;废原料瓶/桶、废活性炭、含油墨废抹布及手套、废油墨、废胶水分类收集后暂存于危废暂存场所,交给有危险废物处理资质的单位处理。本项目危险废物暂存间按照国家《危险废物贮存污染控制标准》(GB18597-2023)的要求进行设置。

10.4 环保机构的设置及环境管理规章制度

(1) 建设环境保护管理机构

为做好建设项目环境保护工作,减轻该建设项目废气、噪声、固体废物对环境的影响程度,公司设有专人负责检查、维修、操作,保证环保设施的正常运行,防止污染事故的发生。

(2) 建立环境管理制度

公司制定出切实可行的环境污染防治办法和措施,做好环境教育和宣传工作,提高各级管理人员和操作人员的环境保护意识,加强员工对环境污染防治的责任心,自觉遵守和执行各项环境保护的规章制度。加强日常环境管理工作,保证日常环境管理工作落到实处,防止污染事故的发生。主动加强与环境保护管理部门的沟通和联系,主动接受环境主管部门的管理、监督和指导。

11 验收监测结论

11.1 环保设施调试运行效果

11.1.1 废气

本项目复合、烘干、印刷、涂布、制袋工序产生的有机废气经统一收集后引至一套"二级活性炭吸附装置"处理后通过15m排气筒排放。覆膜工序产生的有机废气通过车间抽排风系统以无组织形式排放。

根据以上废气检测结果,本项目有组织排放的非甲烷总烃达到《印刷工业大气污染物排放标准》(GB41616-2022)表 1 大气污染物排放限值及《合成树脂工业污染物排放标准》(GB31572-2015 及 2024 年修改单)表 5 大气污染物排放限值较严者要求;总 VOCs 达到广东省《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表 2 凹版印刷第 II 时段排放限值要求; 臭气浓度达到《恶臭污染物排放标准》(GB14554-93)中表 2 恶臭污染物排放标准值。

厂界无组织排放的挥发性有机物(总 VOCs)满足广东省《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)中表 3 无组织排放监控点浓度限值要求;非甲烷总烃满足《合成树脂工业污染物排放标准》(GB31572-2015 及 2024年修改单)表 9 企业边界大气污染物排放浓度限值要求;臭气浓度满足《恶臭污染物排放标准》(GB14554-93)表 4 恶臭污染物厂界标准值中二级新、扩、改建标准限值要求。

厂区内无组织排放的有机废气满足广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值要求。

11.1.2 废水

本项目生活污水经园区三级化粪池处理达标后,排入市政污水管网进入永和水质净化厂处理。

根据废水监测结果,本项目生活污水经园区三级化粪池处理后可满足广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准要求。

11.1.3 噪声

根据验收检测结果表明,本项目厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

11.1.4 固体废物

根据现场核查,本项目一般工业固废贮存间符合《中华人民共和国固体废物污染环境防治法》《广东省固体废物污染环境防治条例》等相应防渗漏、防雨淋、防扬尘等环境保护要求;危险废物暂存间符合《危险废物贮存污染控制标准》(GB18597-2023)相关要求。

本项目废包装材料、边角料和次品收集后交给资源回收单位回收处理;旧印版由供应商回收,重新制版,用于生产;废原料瓶/桶、废活性炭、含油墨废抹布及手套、废油墨、废胶水分类收集后暂存于危废暂存场所,交给有危险废物处理资质的单位处理。

11.1.5 污染物排放总量

根据广州开发区行政审批局关于《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表的批复》(穗开审批环评(2025)73号),本项目废气污染物无总量控制要求。根据本项目验收监测结果核算,项目验收监测期间满负荷工况下有机废气排放量为0.3887t/a<0.391t/a,小于其环评报告核算的排放量。

本项目废水为生活污水,经三级化粪池预处理达标后排入市政污水管网,进入永和水质净化厂处理无废水排放总量控制要求,因此,本项目验收监测不核算生活污水污染物排放量。

11.2 变动情况

对照《污染影响类建设项目重大变动清单(试行)》,本项目建设性质及规模、建设地点、生产工艺、环境保护措施实际建设内容均与《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》及其批复(穗开审批环评(2025)73号)一致,未发生重大变动。

11.3 综合验收结论

本项目实际建设内容与《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》及其批复基本一致,无重大变动,并落实了各项污染防治措施,未出现《建设项目竣工环境保护验收暂行办法》(国环规环评〔2017〕4号)中所规定的九种验收不合格情形。验收监测结果表明,污染物均能达标排放。

综上所述,本项目总体符合竣工环境保护验收条件,可以通过环保验收。

12 建设项目竣工环境保护"三同时"验收登记表

建设项目竣工环境保护"三同时"验收登记表

镇事单位(美香)、广州县后有装有限公司

100 L/2021

項目经办人(签字)

填表	《单位(董章):广州星辰包	装有限公司	i]		填款人(3	8字):			项目经办	人(签字):				
	項目名称	广州星	辰包装有风公	司防發电段生产	代线新建项目	項	目代码	25	03-440112-04-01-12	7042	建设地点	广州市黄埔区水和街道	环岭路 15号	
	行业类别			也P/制,C2921		建	设性质	23	建 口改扩建 口技	术改造	项目广区中心经纬度	东经 113°32′15.925″,北纬	23°12'35.59	
	设计生产能力	年产防静电屏蔽袋 350吨、防静电铝轴防器袋 415		袋100吨、日	实际	生产能力	吨、铝塑包装	蔽袋 350 吨、防静电 卷材 450 吨食品包 卷 100 吨、EFE 防	装账/袋 100吨、	环评单位	广州尚洁环保科技股份	份有限公司		
6.00	环评文件审批机关		广州开发	这区行政审批局		批	准文号	穂	F审批环评(2025)	73 %	环评文件类型	报告表		
建设度目	开工日期		202	25年4月		峻	工日期		2025年5月		排污许可证申领时间	1		
RH	环保设施设计单位			1		环保设	施施工单位				本工程排污许可证编号	1		
	验收单位		广州星后	返包装有限公司		环保设	施监测单位		东景和检测有限公	े वो	验收监测时工况	93		
	投资总概算 (万元)			1000		环保投资总	(板算(万元)		20		所占比例(%)	2		
	实际总投资 (万元)			1000		实际环保	投资 (万元)		20		所占比例(%)	2		
	後水治理	1	废气治理	14 噪声治理	E 1	固体	废物治理		5		绿化及生态 (万元)	/ 其他(万元)	1	
新地	曾改水处理设施能力			1		新增废气	处理设施能力 🛦		30000m³/h		年平均工作时间	2400		
5	运营单位		1			单位社会统一位或组织机构代			1		验收时间	2025年7月		
15.0	污染物	原有排 放量 (1)	本期工程实 际排放浓度 (2)	本期工程允 许排放浓度 (3)	本期工程产 生量 (4)	本期工程 自身消滅 量(5)	本期工程实际 打放量(6)	本期工程核 定律放函(7)	本期工程"以新 带老"消减量(8)	全厂实际排放 总量(9)	全厂核定排放总量 (10)	区域平衡基代介减量(LIY	指放增减 (f2)	
7	茂水	0	1	1	0.096	0	0,096	7	0	0.096	1		+0.09	
改	化学需氧量	0	170	500	1	1	0.1632	1	0	0.1632	1		+0.163	
9	展展	0	3.44	1	1		0,003	1	0	0.003	1		+0.00	
2	石油类	1	1	1	-1	/	1	1	1	1	1	1	1	
が職	废气	1	1	1	4	V	4	1	1	4	1.	/	+4	
总量空间	二氧化硫	1	1	1		7		1	1	1			1	
	烟尘	1	1	1	1	1	1	1	1	1		1	- 1	
业	工业粉尘	1	1	1	1	-	1	1	1	1		1	1	
企	氯氧化物	1	1	1	1	1	1	1	1	1		/	1	
工业建设项目	工业固体废物	0	0	0	0	0	0	1	0	0		1	0	
[详填)	特美与项目 物行其目录他有	0	2.73	120	1.5966	1.2246	0.372	0.391	0	0.372	0.372	,	+0.372	

往: 1、样故增成是: (+) 表示增加: (-) 表示减少。2、(2)等4.2(4) 等2。中(4)等4。(1)。3、开爱单位: 度水拌改量——万吨/年; 度气拌改量——万标立方彩/年; 工业网件皮物拌改量——万吨/年; 水污 原物; 以为数——毫克/有4.根据环评报复为本项目无效气。皮水拌改是最控制要求。上表效素而定数率指标度确或效本。

附件1 营业执照

附件2 排污登记回执

固定污染源排污登记回执

登记编号: 91440116563975792T002Y

排污单位名称,广州量辰包装有限公司(环岭路厂区)

生产经营场所地址:广州市黄埔区永和街道环岭路15号

统一社会信用代码,91440116563975792T

登记类型, 口首次 口延续 口变更

登记日期: 2025年05月26日

有效期: 2025年05月26日至2030年05月25日

注意事項:

- (一)你单位应当遵守生态环境保护法律法规、政策、标准等。依法履行生态环境保护责任和义务,采取措施防治环境污染,做到污染物程定达标模放。
- (二)你单位对排污登记信息的真实性、准确性和完整性负责。依法接受生态环境保护检查和社会公众监督。
- (三)排污登记表有效期内,你单位基本情况、污染物排放去向、污染物排放执行标准以 及采取的污染防治措施等信息发生发动的。似当自变动之日起二十日内进行变更登记。
- (四) 你单位若因美闭等原因不再排污,应及时注销排污登记表。
- (五)你单位因生产规模扩大、污染物排放量增加等情况需要申领排污许可证的,应按规 定及时提**交**排污许可证申请表,并同时注销排污登记表。
- (六) 若條單位在有效期滿后继续生产运营,应于有效期满前二十日內进行延续登记。

更多资讯。请关注"中国排污许可"官方公众流治。

广州开发区行政审批局

穗开审批环评〔2025〕73号

关于广州星辰包装有限公司防静电膜生产线 新建项目环境影响报告表的批复

广州星辰包装有限公司:

你司通过广东政务服务网报来的《广州星辰包装有限公司防静电膜生产线新建项目环境影响报告表》(以下简称《报告表》) 及有关材料收悉。经审查,根据《中华人民共和国行政许可法》 第三十八条第一款、《中华人民共和国环境保护法》第十九条, 以及《中华人民共和国环境影响评价法》第三条、第十六条、第 二十二条等规定,或批复加不:

一、根据环境影响评价结论,从环境保护角度,我局同意该项目租用、州市英埔区水和街道环岭路 15 号建设。请你司按照《报告表》《容落文各项环境污染控制和环境管理措施。

项目内设无溶剂复合机、干式复合机、固化箱柜、4色凹版印刷机、涂布机、覆膜机等生产设备(具体见《报告表》),以薄膜、无溶剂聚氨酯胶粘剂、水性油墨、乙醇、防静电镀等为主

要原辅材料,主要从事防静电膜、塑料薄膜生产,年产防静电屏蔽袋 350 吨、防静电铅角防潮袋 415 吨、铝塑包装卷材 450 吨、食品包装膜/袋 100 吨、日化品包膜/袋 100 吨、EPE 防静电间纸 487 吨。项目年工作 300 天,每天 8 小时。

(一) 凌水治理措施和要求

办公生活污水经三级化粪池预处理,在满足广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准的前提下,群入市政污水管网由永和水质净化厂集中处理。

(二) 废气治理措施和要求

米。

2.排气筒应按有关环境监测规范要求设置取样孔及取样平台,以便环境监测部门进行取样监测。

3.7 区内 VOCs 应满足广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值; 广界非甲烷总烃应满足《合成树脂工业污染物排放标准》(GB31572-2015)及其修改单表 9 企业边界大气污染物排放水度限值, 臭气浓度应满足《恶臭污染物排放标准》(GB14554-93)表 1 恶臭污染物厂界标准值。

(三)噪声治理措施和要求

应对声源设备进行合理布设,同时采取隔声、降噪、防振等措施,确保厂界噪声符合《工业企业厂界环境噪声排放标准》 (GB12348-2008)3类标准。

(四)固体废弃物防治措施和要求

1.废原料桶/瓶、含油墨废抹布及手套、废活性炭等属《国家 危险废物名录》中的废物,应按有关规定进行收集,委托具有相 应危险废物经营许可证资质的单位进行集中处理。按时完成年度 固体废物申报量记。危险废物暂存场应按照国家《危险废物贮存 污染控制标准》(GB18597-2023)的要求进行设置。

2.废包装材料、边角料和次品、旧印版等应委托有相应经营 範围或处理资质的公司回收或处理。 3.生活垃圾应按环卫部门的规定实行分类收集和处理。

(五)应设专职人员负责该项目的环境管理工作,建立健全环境管理制度,社会污染物超标排放;对物品在运输、存放、使用等全过程进行有效管理,并应采取有效措施防范和应对环境污染事故发生;妥善处置固体废物并承担监督责任,防止造成二次污染.

(六)应按《关于印发广东省污染源排污口规范化设置导则的通知》(粤环[2008]42号)要求设置排污口。

三、项目建成后,正式排放污染物前按照排污口规范化管理要求做好排污口规范化,向我局申办排放污染物许可证;按照《建设项目环境保护管理条例》(国务院 2017 年 7 月 16 目修订)和《广州市生态环境局关于规范建设单位自主开展建设项目竣工环境保护验收的通知》(穗环 《2020】102 号》要求依法办理该项目竣工环保验收工作,环境保护设施经验收合格后方可正式投入运行。

四、建设项目的环境影响评价文件经批准后,建设项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施发生重大变动的,建设单位应当重新报批建设项目的环境影响评价文件。

五、本意见仅作为环境影响评价行政审查意见,如涉及消防 要全、卫生防疫、文物保护、国家安全、公共安全、市客环卫等 专业管理问题,应取得相关专业工管部门意见。

六、如不服上述行政许可决定,可在接到本文之日起60日内,向广州开发区管委会提出行政复议申请,或在6个月内直接向广州铁路运输法院提起行政诉讼。行政复议、行政诉讼期间内,不停止本决定(批复)的履行。

广州开发区行政建设局

广州市生态环境局黄埔分局、广州尚洁环保科技股份有限公司 2025年4月25日印发 区行政事批局办公室

附件 4 危险废物处置合同

危險废物处置服务合同 合同编号、NC20250514-024

甲方:广州星辰包装有限公司

乙方: 东莞市新东欣环果投资有限公司

第一部分 协议书

根据《中华》民共和国环境保护法》、《中华人民共和国固体废物污染环境防治法》、《危险废物经营 许可证管理办法》及相关环境保护法律、法规、甲方须依法集中处理企业生产过程中产生的危险废物、乙方 受甲方交托就免险废物收运、处置事宜达成如下合作内容:

一、经协商、双方确定危险废物种类及数量如下:

749	废物名称	年預计量 (吨/年)	废物 类别	处置 方式	废物 形态	主要成分	产生来源
	皮原料瓶/桶	0. 2089	HW49	焚烧	固态	塑料	
2	含油墨废抹布及手套	0.06	HW12	焚烧	固态	布	
3	废活性炭	8, 7	HW49	焚烧	固态	活性奖	1
4	废油墨	0.5	HW12	焚烧	液态	油墨	1
5	废胶水	0.5	HW13	焚烧	液态	胶水	1
	总量	9, 9689			0	(年)	

- 二、合同期内运输及费用支付详细见专用条款。
- 三、甲方承诺提供给乙方的危险废物不出现本合同通用<u>条款</u>约定的异常情况;乙方承诺按法律法规规定 及本合同约定收运处置废物。
 - 四、本合同有效期从 2025 年 5 月 13 白尼至 2026 年 5 月 12 日止。
- 五、协议书与通用条款、专用条款。附件一起构成各同变件,上述合同文件包括其补充和修改,同一类 文件以最新签署的为准。通用条款一般不予修改,如有修改填写至专用条款横线处,专用条款与通用条款冲 突的以专用条款约定为准。专用条款部分预经双方盖章确认。
 - 六、本合同未尽事宜,合同双方另行签订补充协议,补充协议是合同的组成部分。
 - 七、本合间共一式或份。甲方特查份、乙方持查份。

公司全称(合同章/公章)	甲方: 广州星辰包装有限公司	乙方: 东莞南斯奈府环席投资有限公司
法定代表人 (签章) 或授 股代表人 (签字)		類別相望
送订时 间		2013.5.6

第1页共5

第二部分 通用条款

一、甲方责任和义务

- 1.1、合同签订后,若合同期内**明**方被各国所列废物交子其他第三方单位或甲方自行处理的,甲方承担 产生的全部费用及所有法律责任。
- 1.2、甲方完成危险废物管理杆贷备案并通过事核。提前7个工作日书面通知乙方安排废物收运,甲、乙 双方商定收运时间。
- 1.3、甲方应参照规行省效的《危险废物收集贮存运输技术规范》、《危险废物贮存污染物控制标准》相关条款要求,选择相应的包装物,分类包装,设置对应的标签与安全警示标识。标签内容包括"产废单位名称、废物类别、废物多称、主要成分(化学名称)、危险特性、废物重量、产生日期"等。

1.4、甲方承诺提供给乙亩的危险废物不出现以下异常情况;(1)、危险废物中存在未列入本合同危废清单类别的(特别是易燃易爆物质、放射性物质、多氮联苯和含氰含砷等剧毒物质);(2)、危险废物的标识不规能或错误的。包装物污损、破损、严重变形和密封不严、泄露的;(3)、两类及两类以上危险废物准入同一组装物内,或者固态与液态、有机与无机废物混装同一包装物的;(4)、危险废物中存在未如案告知乙方危险化学成分的;(5)、违反危险废物运输和包装相关国家法律法规、技术标准和规范,以及通用技术条件的其他异常情况的。

- 1.6、废物运输之前,甲方应为乙方上门收运提供必要的条件。实际收运散、甲方废物名称及包装须得到乙方认可,如不符合合同相关约定,甲方负责整改直至乙方同意接收。乙方同意接收仅代表甲方包装符合乙方收运要求。
- 1.7、乙方收运人员及车辆进入甲方辖区作业前,甲方存义分类有责任将其公司的ERS管理要求(环境、 健康、安全)对收运人员进行提前告知。
 - 二、乙方责任和义务
 - 2.1、乙方应保证所持有的危险废物经营资可证。营业执照等相关证件在合同期内的有效性。
- 2.2、乙方指定具各危险废物《道路运输经营许可证》的运输单位承运。运输单位派专用车辆及具备相应机动车驾驶证和危险货物运输从业资格证的可机进行运输。
- 2.3、乙方收运人员自行配备个人防护用品等,进入甲方厂区后文明作业并遵守甲方EHS管理要求。作业 完毕后将其作业范围清理于冷。
- 2.4、乙方保证各项处理处置条件和设施符合国家法律、法规对处理处置危险废物的技术要求,并且在运输和处理处置过程中、不产生材斯境的二次污染。
 - 三、双方责任和义务
- 3.1. 双方协商确定收运域间,完成交接危险废物时,应在废物移交单据上签名确认,并应按法律、法规、政策要求在"广东省图像废物环境监管信息平台"及时准确填写危险废物转移电子联单。一方对填写信息有异议,根据实际发生收运情况(以磅单为准)重新确认并修正平台信息,直至完成提交。

第2页共5页

3.2、双方守约前提下,甲方将特处理的危险废物交乙为签收之的、责任由甲方自行承担;乙方签收废 物移交单据后, 责任由乙方自行承担, 法律法规另有规定除外。

- 3.3、因本合同的签署和履行而知悉的对方任何商业信息,包括但不限于处理的废物种类、名称、数 量、价格及技术方案等,均不得向任何死亡方迹器。这约方造城守约方损失的。赔偿对方直接经济损失。
- 3.4、甲方人员不得以任何借口和理由向乙方索要款物或其他非法利益。乙方人员不得以任何方式向甲 方进行行贿。任何一方违反上违反腐条款的。应询守约方赔偿因此产生的直接经济损失。
 - 四、收运及运费
 - 以专用条款为准。
 - 五、处置费用及结算
 - 以专用条款为准。
 - 六、 违约责任
- 6.1、甲方未能及时依照法律法规办理环保备案手续导致合同期内废物未能进行合法转移的,由此产生 的责任由甲方自行承担。
- 6. 8、甲方废物类型、数量、名称及包装不符合合同相关约定的,乙方拒绝接收,无需承担违约责任。 以下情况导致乙方在运输、装卸、处置过程中发生人身或安全事故,一切经济损失(包括何不限于通输费、 装卸费、废物分拣及检测费、废物暂存费。其他异常处置费用)及法律责任均由甲方承担:(1)、废物名标有 误及包装不当;(2)、甲方故意隐瞒乙方牧运人员,或者存在过失造成乙方将不符合本合同约定的危险废物或 爆炸性、放射性废物装车或收运进入乙方仓库的;(3)、废物性状发生重大变化、甲方未及制造知导致乙方损 失。同时乙方有权根据《中华人民共和国环境保护法》以及其它相关法律、法反规定上抵环境保护行政主管
- 6.3、乙方可就不符合本合同规定的危险废物重新提出报价单交予甲方。经双方商议同意签字确认后。 由乙方负责处理;如协商不成的,乙方将危险废物退回给平方。所产生的收退运费及其他费用等均由甲方承 担,由此给乙方造成的全部损失及法律责任均由甲方承担。若甲方等上述不符合本合同规定的危险废物转交 于第三方处理或者由甲方负责处理,因此而产生的全部费用及法律责任均由甲方承担。
- 6.4、若甲方未按照合同约定履行付款义务的,乙方有权选择继续履行合同,并要求甲方每日按拖欠款 项的5%向乙方支付逾期付款违约金;威乙方有权选择单分解除合同,并要求甲方按合同总金额30%向乙方支 付违约金。违约金不足以弥补乙方因此造成的损失的。甲方还应继续赔偿乙方全部损失。
- 6.5、合同双方中一方违反本合同的规定、守约方有权要求违约方停止并纠正违约行为;如守约方书面 通知进约方仍不予以改正。旁约方有权中止直至解除本台同。因此而造成的经济损失及法律责任由违约方承,同专门 担,乙方通过司法途径维护自身权益的。甲方应承担乙方因此产生的全部费用和损失(包括但不限于乙方的 直接损失、可得利益损失、乙方支付给第三方的赔偿费用/违约金/罚款、调查取证费用/公证费、诉讼费 用、律师费用、财产保全费、财产保全担保费、鉴定费、评估费、拍卖费、强制执行费、差旅费以及因此而 支付的其他合理费用)。
- 6.6、合同双方中一方无论当理由撤销或者解除合同。造成合同另一方损失的。应赔偿因此而造成的

7.1、因不可抗力而不能履行本合同时,应在不可抗力事件发生之后表日内向对方书面通知不能履行或 者延期履行、部分履行的理由。在取得相关证明并书面通知对方后,本合同可以不履行或者延期履行、部分 履行,并免予相关方承担相应的违约责任。双方协商一公不履行的,则签订解约协议。

7.2、因本合同发生的争议,观方协商解决。 故能不成的,提交至提起诉讼方所在地人民法院诉讼解决。 双方确认司法机关后可以通过合同提供的邮商或电子邮箱两种方式送达各个司法阶段诉讼法律文书。 如地址提供不确切或者地址变更层色和不及时,使法律文书无法送达或未及时送达。自行承担由此可能产生的法律后果,同时,无论经律文书送达合同专用条款尾部的地址或电子邮箱或退件,送达或退件之日均视为相关法律已经送达、

第三部分 专用条款

专用录款内容包含中乙双方商业机密,除用于内部存档,不得向第三方提供。专用合同条款的编号应与 相应的费用合词条款的编号一致;合同当事人可以通过对专用合同条款的修改,满足具体服务特殊要求。避 免益被修改通用合词条款。

一、收运及运费

- → 运输费用标准:合同期内提供免费拼车运输服务。
- (二) 运输费用说明
- 1.1、甲方完成"广东省固体废物环境监管信息平台"申报后通知乙方收运联系人、得到乙万确认后收运

二、处置费用及结算

序号	度物名称	度物小代码 (最终以平台 联单为准)	处置方式	包装方式	94 Hits R (19/46)	倉積車分 (先/吨)	付款方
1	废原料瓶/桶	900-041-49	焚烧	摆绑	0. 2089	2600	甲方
2	含油墨废抹 布及手套	900-253-12	焚烧	袋装	0.06	2600	甲方
3	废活性炭	900-039-49	焚烧	後裝	8.7	2500	甲方
4	废油墨	900-252-12	关绕	植装	0.5	2600	甲方
5	废胶水	900-014-13	焚燒	档装	0.5	2600	甲方

2.1、双方同意以下方式结算。

每月10日之前(节假已晚还)双方核算确认前月废物处置费用、运输费及危险废物回收款。乙方根据 合同附件的废物单价及本合同专用条款第一条的运费标准制作《对联单》,经双方盖章(公章/合同专用章 /财务专用章/经办部门用章/确认后,收款方开具增值税电子发票给付款方,付款方在收到发票后30个日历 日内(以开票日期次日开始计算)付清费用。甲乙双方按照合同条款各自开票付费、收费和付费不及律。

以上结算方式乙方指定收款账户为:公司全称: 东莞市新东欧环保投资有限公司; 收款银行: 中國银行完轄支行

※4页共5万

(联行号: 104602046350);银行账号: 663972060799。

- 2.2、因故双方协商退款退票时,若付款方无法正常迅票导致收款方视务损失的。由付款方承担相应税 金。
- 2.3、甲、乙双方工作人员应严格区外不同种类的废物,分别称重。双方称重误差±2%以内,以甲方磅单数量为准;若甲方无地磅,则以乙方磅单为准;任何一方对称重有异议时,双方协商解决。若甲方无地磅且要求运输车辆至第三方地磅林重时,则由甲方支付相关磅费。双方对称重存在争议期间。乙方有权拒收甲方的危险废物且不承担违约责任。对于需要以浓度或含量来计价的有价废物,以双方交接时的现场取样的浓度或含量为准。该样应这至乙方指定的机构进行检测。
- 2.4、若实际进场废物检测结果的"核准废物成分"超过本合同定价依据时,双方通过协商调整结算价格。任一指标起出范围后处置费价格另议,检测结果以废物入场时检测结果为准。针对超标情况。甲乙双方重新议价无法达俄一致时,乙方有权停止收运甲方的危险废物且不承担违约责任。
- 2.6、如食腌皮物; 及乙方付费。(此处根据实际情况增加付费废物的关键指标),甲乙双方应在交货 村共同取样,当面封存公样并签字,由乙方保管。以乙方检测结果作为结算依据, 检测费用乙方承担。若对 检测的结果存有异议,双方共同协商指定第三方检测,由存疑方支付检测费用。
- 2.6、铜价、按收运当日上海期货交易所当月均价\当日收市价作为结算基准,当铜价不在以上价格区间时,双方另行商议价格。

一、 北他

3.1、本合同经双方法人或授权代表签名并加盖公章或合同专用章后正式处效。合同双方同意,自东莞市新东欣环保投资有限公司加盖公章或合同专用章之日起(合同起始日期和合同器款已期不一致的,以后到者为准),六个月内,如签约方未将合同约定任何废物交付给处置方或未按合同约定支付预付款的(如有预付款),合同自动失效。合同失效后,自乙方加盖印章之日起所产生的按律责任与乙方一概无关,同时乙方有权将失效合同报备至甲方所属地环保部门。

3.2、修改内容:_

3.3、通讯信息

公司地址	广州市黄埔区永和街道永和经济区坏岭路15号	广东省东莞市麻满镇海心沙路1号
收运地址	广州市黄埔区永和街道永和鲜济区环岭路15号	广东省东莞市麻涌镇海心沙路1号
收运联系人	WI	何五洋/赘彦锋
收运联系人电话号码	15986432938	18929575560/0769-39028806
电子邮箱或传真	1 1 #	liangzihang@dshuanbao.com.cn

公司全称(合同章/公賈) 甲方子 广州星 医 装有 陳公司 乙方: 东京 市場 赤

咨询执线: 400-1627-618

85 T # 5 T

检测报告

NO: GDJH2505009EB

广州星辰包装有限公司防静电膜生产线 新建项目

受 检 单 位: 广州星辰包装有限公司

项目 地址: 广州市黄埔区永和街道环岭路15号

检测类别:_____委托检测(验收检测)

报告 日期: 2025年07月10日

广东景和检测有限公司

2 1 前 # 22 前

报告编号: GDJH2505009EB

说明

- 1、 本报告无 CMA 章、骑缝章和检验检测专用章无效。
- 2、 本报告无编制人、审核人、签发人签名无效,报告经涂改、增删无效。
- 3、 未经本检测机构书面同意,不得截取、部分复印本检测报告并使用,未经本检测机构书面同意不得作为商业广告使用。
- 4. 委托单位对本检测报告有异议,请在收到报告之日或指定领取报告之日起 15 个工作日内提出申诉,逾期不予受理。
- 本检测机构只针对客户采样/送检时的样品的情况进行检测,委托监测结果只代表该样品的情况,报告中所附限值标准均由委托方/受检方提供,仅供参考。
- 6、 对送检样品,报告仅对送检样品负责。
- 7、 除客户特别申明并支付样品管理费,所有超过标准规定时效期的样品均不 再做留样。
- 8、 本次检测的所有记录档案保存期限为六年。

单位名称:广东景和检测有限公司

地 址:广州市黄埔区(中新知识城)凤凰四路99号B栋601房

电 话: 020-82513914

编制: 陈裁划

签

发: 黄家海 黄色化

亩 核. 经收入

签发人 职务: 授权签字人

签发日期: 200年) 月 15日

第 2 页 共 22 页

报告编号: GD/H2505009EB

一、检测信息

项目名称	广州星辰包装有限公司防	争电膜生产线	新建项目
受检单位	广州星辰包装有限公司		W. 7.14
项目地址	广州市黄埔区永和街道环	食路 15 号	
联系人	向主任	联系电话	13640234425
采样日期	2025.06.03~2025.06.04	采样人员	潘才伦、郑国豪、冉肖徐、谢展锋、 马尹靖
分析目期	2025.06.03~2025.06.09	分析人员	黄心怡、罗晓风、马雅琪、吕品、 萧梓颖、马紫红、林心怡、钟逸娇、 杨栩蔓、刘燕君、张小曼、梁家华、 叶艳琪、郭雪婷、简旦婵
采样依据	《污水监测技术规范》HJ 《水质采样 样品的保存和 《固定源废气监测技术规》 《固定污染源排气中颗粒* 《恶臭污染环境监测技术》 《大气污染物无组织排放》 《工业企业厂界环境噪声	管理技术规定 范》HJ/T 397- 物測定与气态 规范》HJ 905- 监测技术导则	2007 污染物采样方法》GB/T 16157-1996 -2017 》HJ/T 55-2000
排放标准依据	由客户提供。		

二、验收监测工况信息

监测时间	产品名称	设计年产量	设计日产量	实际日产量	生产负荷	
	防静电屏蔽袋	350t	1.167t	1.085t		
2025.06.03	防静电铝箔防潮袋	4154	1,383t	1.286t		
	铝塑包装卷材	4501	1.500t	1.395t		
2023.00.03	食品包装膜/袋	1001	0.3331	0.310t	93%	
	日化品包膜/袋	1001	0.333t	0.310t		
	EPE 防静电间纸	487t	1.623t	1.509t		
	防静电屏蔽袋	350t	1.167t	1.085t		
	防静电铝循防潮袋	415t	1.383t	1.286t		
2025.06.04	铝塑包装卷材	450t	1.500t	1.395t	020/	
40.00.04	食品包装膜袋	100t	0.333t	0.310t	93%	
	日化品包膜/袋	100t	0.333t	0.310t		
	EPE 防静电间纸	487t	1.623t	1.509t		

本页以下空白

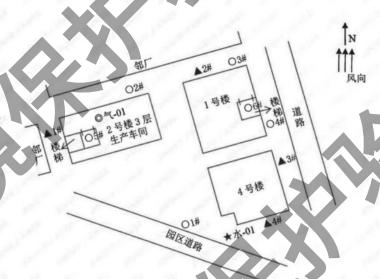
报告编号: GDJH2505009EB

三、检测内容

表 3-1 检测内容、深样点位、检测因子及频次

序号	检测类型	采样点位	检测因子	检测频次
1	废水	园区生活污水处理后 排放口(水-01)	pH 值、化学需氧量、五 日生化需氧量、悬浮物、 氨氮	共1个监测点,监测 2天,每天监测4次
2	有组织废气	复合、印刷、涂布、烘 干、制袋工序废气处理 煎监测口(气-01) 复合、印刷、涂布、烘 干、制袋工序废气处理 后监测口(气-01)	非甲烷总烃、VOCs、 臭气浓度	共2个监测点,监测 2天,每天监测3次(集 气浓度每天监测4次)
3	无组织废气	厂界无组织废气 上风向参照点 1# 厂界无组织废气 下风向监控点 2# 厂界无组织废气 下风向监控点 3# 厂界无组织废气 下风向监控点 4#	非甲烷总烃、VOCs、 臭气浓度	共4个监测点, 监测 2天, 每天监测3次(身 气浓度每天监测4次)
		厂区内无组织废气 2号楼 3 层生产车间门口监测点 5# 厂区内无组织废气 1号楼 2 层生产车间门口监测点 6#	非甲烷总烃	共2个监测点,监测 2天,每天监测3次
4	噪声	厂界西南侧外 1米处 1# 厂界西北侧外 1米处 2# 厂界东北侧外 1米处 3# 厂界东北侧外 1米处 4#	工业企业厂界环境噪声	共4个监测点,监测 2天,每天昼间、夜间名 监测1次

本页以下空白



测 NCE 报告编号: GDJH2505009EB 附: 采样点点位示意图 (示意图不成比例) (表示方式: 废水★,

有组织废气◎,无组织废气〇,噪声▲)

景和检测 报告编号: GDJH2505009EB 四、检测方法、分析仪器及检出限

类型	检测项目	检测方法	标准编号	分析仪器	方法检出限/ 检出范围
	pH 值	电极法	НЈ 1147-2020	防水笔式高精度酸碱 度/温度计/pH-100	0~14 (无量纲)
	化学需氧量	重铬酸盐法	HJ 828-2017	滴定管	4mg/L
废水	五日生化	稀释与接种法	НЈ 505-2009	生化培养箱 /SPX-150B-Z	0.5mg/L
	悬浮物	重量法	GB 11901-1989	电子天平/ATX224	4mg/L
300	展展	纳氏试剂分光 光度法	НЈ 535-2009	紫外可见分光 光度计/UV-2000	0.025mg/L
有组	VOCs	气相色谱法	DB 44/815-2010	气相色谱仪/GC9720	0.01mg/m ³
织废	非甲烷总烃	气相色谱法	НЈ 38-2017	气相色谱仪 /GC9790.II	0.07mg/m ³
-	臭气浓度	三点比较式臭袋法	HJ 1262-2022	-,	
1	臭气浓度	三点比较式臭袋法	HJ 1262-2022		10 (无量纲)
无组		气相色谱法	НЈ 38-2017	气相色谱仪/GC9790 II 气相色谱仪/9790 II	0.07mg/m ³
织废气	非甲烷总烃	便携式监测仪技术 要求及检测方法	НЈ 1012-2018	便携式非甲烷总烃气 相色谱仪 /GC2030Portable	0.07mg/m ³
	VOCs	气相色谱法	DB 44/815-2010	气相色谱仪/GC9720	0.01mg/m ³
噪声	工业企业厂 界环境噪声	《工业企业厂界环 境噪声排放标准》	GB 12348-2008	多功能声级计 /AWA5688	-

报告编号: GDJH2505009EB

五、质量控制和质量保证

为保证验收监测数据的合理性、可靠性、准确性,根据《环境监测技术规范》 质量保证的要求,对监测的全过程《布点、采样、样品贮存、试验室分析和数据 处理等)进行了质量控制。

- (1) 所有参加监测采样和分析人员必须持证上岗。
- (2) 严格按照验收监测方案的要求开展监测工作。
- (3) 合理规范设施监测点位、确定监测因子与频次,保证验收监测数据的准确 性和代表性。
- (4) 采样人员严格遵照采样技术规范进行采样工作,认真填写采样记录,按规 定保存、运输样品。
- (5) 监测分析采用国家有关部门颁布的标准分析方法或推荐方法: 监测人员经过考核合格并持有上岗证; 所用监测仪器、量具均经计量部门检定合格并在有效期内使用。
- (6) 采样分析及分析结果按国家标准和监测技术规范的相关要求进行数据处理 和填报。
- (7) 监测数据和报告严格执行三级审核制度

报告编号: GDJH2505009EB 表 5-1 人员上岗证书编号

姓名	岗位	证书编号	
钟送娇	报告审核	JH-JC-005	
VIADSI	嗅辨员	XBPQCY2411171	
陈彩娴	报告编制	JH-JC-148	
潘才伦	现场采样/检测人员	JH-JC-118	
郑国豪	现场采样/检测人员	JH-JC-004	
冉肖徐	现场采样/检测人员	JH-JC-170	
马尹靖	现场采样/检测人员	JH-JC-142	
谢展锋	现场采样/检测人员	JH-JC-035	
马雅琪	判定师	The Control of the Co	
	嗅辨员	XBPQCY2403113	
罗晓风	判定师	XBPQCY2505445	
黄心怡	判定师	XBPQCY2403112	
杨栩蔓	嗅辨员	粤质检 09457	
游梓 颖	嗅辨员	粤质检11958	
PN 1T ADS	分析员	JH-JC-009	
林心怡	嗅辨员	粤质检 09459	
刘燕君	嗅辨员	XBPOCY2411172	
马紫红	嗅辨员	XBPOCY2505446	
吕品	嗅辨员	學质检 09458	
梁家华	分析员	JH-JC-047	
郭雪婷	分析员	JH-JC-161	
简月婵	分析员	JH-JC-175	
叶艳琪	分析员	JH-JC-145	
张小曼	分析员	JH-JC-150	

表 5-2 样品保存方式一览表

序号	检测项目	固定剂	容器材料	保存温度	保存时间
1	化学需氧量	H ₂ SO ₄ , pH≤2	玻璃瓶	冷藏	2d
2	五日生化需氧量		玻璃瓶	冷藏、避光	12h
3	悬浮物		玻璃瓶	冷藏、避光	7d
4	氨氮	H ₂ SO ₄ , pH≤2	玻璃瓶	冷藏	7d
5	臭气浓度 (有组织)	1	采气袋	常温、避光	24h
6	臭气浓度 (无组织)	1	真空瓶	常温、避光	24h
7	非甲烷总烃	1	采气袋	常温	48h
8	VOCs	1	吸附管	1	1

报告编号: GDJH2505009EB 表 5-3 质控措施具体实施情况一览表

	项目	基础样品总数(个)		实验室平 行(个)	质控样 (个)	现场空白(个)	实验室空白(个)		全程序空 白(个)	穿透试验 (个)
Start of the last	pH值	8	2	1	2	1	1	1	2	1
.5	化学需氧量	8	2	2	2	1	1	1	2	1
废水	五日生化需氧量	8	1	1	2	1	2	1	2	1
650	悬浮物	8	1	1	1	1	1	1	2	1
375	度度	8	2	2	2	1	4	1	2	/
有组织	非甲烷总烃	48	1	6	6	1	1	2	1	
废气	VOCs	12	1	1	1	2	1	1	1	2
无组织	非甲烷总烃	156	12	20	15	1	1	1	1	
废气	VOCs	24	1	1	1	1	1	1	1	- 2

检测项目	内部编号	证书编号	标准值范围	实测结果	单位	判定
pH值	SY-24-097	BY100053	7.06±0.05	7.05	无量纲	合格
pir ar	SY-24-097	BY100053	7.06±0.05	7.08	无量纲	合格
化学需氧量	SY-24-175	BY017667	50.3±3.3	50.1	mg/L	合格
10 4 10 +CM	SY-24-175	BY017667	50.3±3.3	51.7	mg/L	合格
五日生化需氧量	1	1	210±20	2N	mg/L	合格
葡萄糖谷氨酸)	1	1.3	210±20	212	mg/L	合格
海河	SY-25-021	BW0598	8.36±0.42	8.25	mg/L	合格
20300	SY-25-021	BW0598	8.36±0.42	8.30	mg/L	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7,22	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.14	mg/m ³	合格
甲烷(有组织)	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.12	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.16	5	合材
	SQ-25-001	GBW(E)062421	7.21±2%	7.18	mg/m ³	合材
	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.24	mg/m ³	合林
	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m ³	合材
	SQ-25-001	GBW(E)062421	7.21±2%	7.20		合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.16	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.20	mg/m ³	合格
葡萄糖谷氨酸) 复氮	SQ-25-001	GBW(E)062421	7.21±2%	7.26	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.28	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.27	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.21		合格
-10	SQ-25-001	GBW(E)062421	7.21±2%	7.20	mg/m ³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.27	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.14	mg/m³	合格
	SQ-25-001	GBW(E)062421	7.21±2%	7.24	me/m³	合格

报告编号: GDJH2505009EB 表 5-5 废水空白样测试结果

检测项目	检测	始果	M 11.	del de
位例项目	实验室空白	全程序空白	单位	判定
pH 值		6.8	无量纲	合格
pri ut		6.8	无量纲	合格
悬浮物		4L	mg/L	合格
211111		4L	mg/L	合格
化学需氧量		4L	mg/L	合格
		4L	mg/L	合格
五日生化需氧量	0.5L	0.5L	mg/L	合格
	0.5L	0.5L	mg/L	合格
	0.025L	0.025L	mg/L	合格
度度	0.025L	0.025L	mg/L	合格
	0.025L	1	mg/L	合格
	0.025L	1	mg/L	合格

表 5-6 废水平行样测试结果

采样日期	检测项目	现场平行样 结果(mg/L)	相对偏差(%)	允许相对 偏差(%)	判定	实验室平行样 结果(mg/L)	相对偏差	允许相对 偏差(%)	判定
	pH 值	7.6	0.0-11	0.1.11	A. 44.	1			
25	pri ili	7.6	0.0pH	0.1pH	合格		1	1	1
2025/06/03	化学需氧量	165	1.0	-10	A 44	165		≤10	
2023/06/03	TOT MITCH	169	1.2	≤10	合格	161	1.2		合格
夏夏	for for	3.70	5.6	≤10	合格	3.70		≤10	合格
	级级	3.31			可怕	3,40	4.2		
3107 11	pH值	7.7		0.1pH	合格			100	1
3	рн 111	7.7	0.0pH			-1	1	/	
2025/06/04	化学需氧量	163		/ fort	A.111	163	200		
2025/00/04	化子而利里	156	2.2	€10	合格	167	1.2	≤10	合格
3.	氨氮	3.19	1.8	10	4.10	3.19			合格
All of	果果	3.31	1.8	≤10	合格	3.25	0.9	≤10	

备注: pH 值允许相对偏差参考《水质 pH 值的测定 电极法》HJ1147-2020; 其余检测项目参考《固定污染源监测 质量保证与质量控制技术规范 (试行)》 HJ/T 373-2007。

第 10 页 共 22 页

报告编号: GDA12505009EB表5-7 废气空自样测试结果

检测项目	检测统	古果	A6 43-	stat etc
112 007%	现场空白	运输空白	单位	判定
非甲烷总烃 (有组织)		ND	mg/m ³	合格
THE T MUNICIPAL CHIERDAY		ND	mg/m ³	合格
VOCs (有组织)	ND	1	mg/m ³	合格
TOCS (HISTSX)	ND	1	mg/m ³	合格

表 5-8 穿透试验测试结果

采样日期	检测项目	测试结	果(mg/m³)	穿透率 (%)	允许穿透率 (%)	判定
1	VOCs	前管1	18.6			
2025/06/03	(有组织)	后管2	1.43	7.1	≤10	合格
V	VOCs	前管1	0.39	20 2.20	4 4	合格
	(无组织)	后管 2	0.03	7.1	≤10	
	VOCs	前管1	19.0	1 -10		
2025/06/04	(有组织)	后管 2	1.52	7.4	≤10	合格
2023/00/04	VOCs	前管1	0.52	4		N.
6	(无组织)	后管 2	0.04	7.1	≤10	合格

表 5-9 废气平行样测试结果

采样日期	检测项目	实验室平行样结果(mg/m³)	相对偏差(%)	允许相对偏差(%)	判定
		16.6			
and the same	Age of the same	16.5	0.3	≤15	合格
2025/06/03	非甲烷总烃	2.66		- A T - A	A 14
(有组织)	2.65	0.2	≤15	合格	
	2 1	2.67	0.6	≤15	合格
		2.70	40	≥15	D 11
Spirite.	100	17.4	0.3	≤15	合格
	all TIT leb M 12	17.5	-	~15	17.11
2025/06/04	非甲烷总烃	2.69	0.2	≤15	合格
(有组织)	(有组织)	2.70	- A	415	II TH
300		2.66	0.6	-10	A 44
100		2,63	0.0	≤15	合格

备注:非甲烷总烃(有组织)平行样测定结果允许相对偏差参考《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 (相色谱法》HJ 38-2017 中要求。

本页以下空白

报告编号: GDJH2505009EB 续表 5-9 废气平行样测试结果

采样日期	检测项目	实验室平行样结果(mg/m³)	相对偏差(%)	允许相对偏差(%)	判定	
The Party of the P		0.19	5.6	≤20	合格	
100		0.17	A CONTRACTOR			
11		0.13	16.1	≤20	合格	
caller all		0.18				
The state of		0.56	3.7	≤20	合格	
		0.56				
		0.48	7.7	≤20	合格	
188		0.33			4	
100		0.35	2.9	≤20	合格	
		0.35			合格	
2022/2020	非甲烷总烃	0.34	1.4	≤20		
2025/06/03	(无组织)	0.46		A	A	
//4		0.45	1.1	≤20	合格	
		0.46				
		0.51	5.2	€20	合格	
		0.69				
100		0.72	2.1	≶20	合格	
STATE OF STREET		0.70	2.1	A		
		0.73	2.1	≤20	合格	
10/10		0.67			A 14	
100		0.63	3,1	€20	合格	
100		0.63	1		A 14	
37" 6		0.66	2.3	≤20	合格	
- Con	Market Blanch	0.17			A 14	
30		0.15	6.2	≤20	合格	
100		0.17	9.7	<20		
A 300 A 5		0.14	4.1	≤20	合格	
A STATE OF THE PARTY OF THE PAR		0,54	2.9	≤20	A 44	
		0.51	2.9	≥20	合格	
45		0.39	2.5	≤20	合格	
2025/06/04	非甲烷总烃	0.41	2.0	=20	口作	
15	(无组织)	0.47	4.1	≤20	合格	
		0.51	7.1	~20	DI	
A STATE OF THE PARTY OF THE PAR		0,46	6.1	≤20	合格	
		0.52	VI.	~20	11/11	
		0.74	0.7	≤20	合格	
		0.75		200,000	41.46	
		0.76	5.6	≤20	合格	
		0.68 平行样测定结里允许相对偏差	2500.00			

备注: 非甲烷总烃(无銀织)平行样测定结果允许相对偏差参考《环境空气 总烃、甲烷和非甲烷总经的测定 直接进样-气相色谱法》(HJ 604-2017)中要求。

第 12 页 共 22 页

报告编号: GDJH2505009EB 续表 5-9 废气平行样测试结果

采样日期	检测项目	监测点位	(m	行样结果 g/m ³)	相对偏差(%)	允许相对偏差 (%)	判定
lan. Mar	Sage Sag	厂区内无组	仪器1	1.26	0.4	≤5.0	合格
de de	GE	织皮气 2号	仪器 2	1.25	0.4	≥3.0	ा भार
N. Salar	非甲烷总烃	楼 3 层生产	仪器1	1.21	0.0	≤5.0	A+4
	(无组织)	车间门口监	仪器 2	1.21	0.0	≥3.0	合格
		测点 5#	仪器 1	1.21	0.4	750	Aik
2025/06/03		BigAit JA	仪器 2	1.22	0.4	≤5.0	合格
023/00/03		1 X25 7 EE/12 72	仪器1	1.24	0.0		2.24
400			仪器 2	1.24		≤5.0	合格
	非甲烷总烃		仪器1	1.28	0.0	-500	合格
	(无组织)		仪器2	1.28	0.0	≤5.0	百位
///			仪器1	1.32	0.4		A 14
			仪器2	1.31	0.4	≤5.0	合格
		厂区内无组 织废气 2 号	仪器1	1.25	0.4		244
	1000		仪器 2	1.24	0.4	≤5.0	合格
	非甲烷总烃	楼 3 层生产	仪器1	1.28	***		合格
30	(无组织)	在 间门口监	仪器 2	1.28	0.0	≤5.0	
	100	测点 5#	仪器1	1.32	0.4		A 44
2025/06/04	37	bank on	仪器 2	1.31	0.4	€5.0	合格
2025/00/04	1997	厂区内无组	仪器1	1.29		500	A 14
		织废气1号	仪器 2	1,29	0.0	≤5.0	合格
	非甲烷总烃	楼 2 层生产	仪器1	1.34			V 10
	(无组织)	车间门口监	仪器 2	1.33	0.4	≤5.0	合格
	21/2	测点 6#	仪器1	1.30			A 14
. 45	- 25	测点 6#	仪器 2	1,31	0.4	≤5.0	合格

备注: 平行样测定结果允许相对偏差参考《环境空》和该气总经、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》HJ 1012-2018 中要求。

本页以下空白

报告编号: GDJH2505009EB 表 5-10 主要监测仪器校准情况一览表

采样日期	仪器名称及型号	仪器编号	仪器 设定流量 (L/min)	监测前 校准器流量 (L/min)	相对误差(%)	监测后 校准器流量 (L/min)	相对误差(%)
200			10	10.2	2.0	10.2	2.0
2025/06/03		C014-03	20	19.8	1.0	20.3	1.5
	大流量烟尘(气)	() ()	30	29.9	0.3	29.9	0.3
	测试仪/YQ3000-D	C014-04	10	9.94	0.6	9.87	1.3
			20	19.9	0.5	19.7	1.5
		A	30	30.4	1.3	29.7	1.0
		C038-01A	0.1	0.098	2.0	0.098	2.0
	双路大气采样器	C038-02A		0.098	2.0	0.101	1.0
	/TQ-1000	C038-03A		0.103	3.0	0.102	2.0
		C038-04A		0.099	1.0	0.097	3.0
		C014-03	10	9.93	0.7	10.2	2,0
	State State Hall		20	20.1	0.5	20.3	1,5
1 A	大流量烟尘(气)	JE NO	30	30.3	1.0	30.3	1.0
77.	测试仪/YQ3000-D	200	10	10.1	1.0	10.3	3.0
2025/06/04	D D 3	C014-04	20	19.7	1.5	20.2	1.0
2023/00/04	N. S. S.	100	30	30.4	1.3	30.4	1.3
	400	C038-01A	440 340	0.101	1.0	0.101	1.0
	双路大气采样器	C038-02A	0.1	0.102	2.0	0.099	1.0
	/TQ-1000	C038-03A	0.1	0.098	2.0	0.102	2.0
1000	31 31	C038-04A	12.5	0.100	0.0	0.098	2.0

续表 5-10 主要监测仪器校准情况一览表

采样日期	声级计校准器 名称及型号	仪器编号	监测前校准值 dB(A)	监测后校准值 dB(A)	差值 dB(A)	合格与否
2025/06/03	声级校准器 /AWA6021A	C055-01	93.8	93.8	0.0	合格
2025/06/04	声级校准器 /AWA6021A	C055-01	93.7	93.8	0.1	合格

本页以下空白

报告编号: GDJH2505009EB 续表 5-10 主要监测仪器校准情况一览表

采样日期	仪器名称及型号	仪器编号	标准缓冲溶液 标准值	测试标准值	差值	合格与否
2025/07/02	防水笔式高精度酸碱度 /温度计/pH-100	C025-02	6.86	6.88	0.02	合格
2025/06/03 防水笔式7	防水笔式高精度酸碳度 /温度计/pH-100	C025-02	9.18	9.17	0.01	合格
S	防水笔式高精度酸碳度 /温度计/pH-100	C025-02	6.86	6.85	0.01	合格
2025/06/04	防水笔式高精度酸碱度 /温度计/pH-100	C025-02	9.18	9.19	0.01	合格

各注: pH 计在使用前用标准缓冲溶液校准,仪器的示值与标准缓冲溶液的 pH 值之差应≤0.05 个 pH 单位。

表 5-11 仪器设备检定/校准信息一览表

序号	仪器名称及型号	内部编号	类型	有效日期
	便携式气体、粉尘、烟尘采样仪综合校准装 置/ZR-5410A	C019	校准	2025/07/27
2	大流量烟尘(气)测试仪/YQ3000-D	C014-03	校准	2025/07/27
2 10	人机重构主(广 积低仅/ I Q3000-D	C014-04	校准	2025/07/27
	and the second second	C038-01	校准	2026/02/20
3	双路大气采样器/TO-1000	C038-02	校准	2026/02/20
118	WALLY CHAMME TO TOO	C038-03	校准	2026/02/20
		C038-04	校准	2026/02/20
4	便捷式风速仪/PLC-16025	C020-02	校准	2025/08/04
5	数字温湿度大气压力计/DYM3-02	C023-02	校准	2025/08/04
6	污染源真空箱采样器/MH3051	C009-01	1	1
- 1	17米以外头上相水杆·na/MII5057	C009-02	1	1
7	防水笔式高精度酸碱度/温度计/pH-100	C025-02	校准	2025/08/04
8	多功能声级计AWA5688	€001-04	检定	2026/04/14
9	声级校准器/AWA6021A	C055-01	校准	2026/04/27
10	便携式非甲烷总烃气相色谱仪	C051-01	校准	2026/05/18
10	/GC2030Portable	C051-02	校准	2026/05/18
11	电子天平/ATX224	S013-01	校准	2025/07/27
12	恒温恒湿生化培养箱/SPX-150B-Z	S020-03	校准	2025/07/27
13	紫外可见分光光度计/UV-2000	S122	校准	2025/07/21
14	气相色谱仪/GC9720	S004-01	校准	2025/07/27
15	气相色谱仪/GC9790II	S059	校准	2025/07/27
16	气相色谱仪/9790II	S004-02	校准	2025/07/27

报告编号: GDJH2505009EB

表 6-1 废水检测结果

	_	-		A A DEC DATA !!					
处理设施	三级化粪池			VA					
排污去向	市政管网				all Van	-	ale d	8 19	
样品状态	黄色、明显气味、少	量浮油				b	-	.6 .4	
采样点位	检测因子		97	检测结果	果	150	A6 12.	执行标	达标
水杆林匠	19.000424	第一次	第二次	第三次	第四次	均值/范围	单位	准限值	情况
园区生活污水 处理后排放口 (水-01)	pH值	7.6	7.7	7.8	7.7	7.6~7.8	无量纲	6~9	达标
	五日生化需氧量	53.6	57.2	55.2	59.0	56.2	mg/L	300	达标
	化学需氧量	166	158	174	155	163	mg/L	500	达标
(2025/06/03)	悬浮物	98	94	103	91	96	mg/L	400	达标
	氨氮	3.43	3.42	3.45	3.48	3.44	mg/L	-	
园区生活污水	pH值	7.7	7.7	7.8	7.8	7.7~7.8	无量纲	6-9	达标
处理后排放口	五日生化需氧量	54.0	60.4	58.0	52.8	56.3	mg/L	300	达标
(x-01)	化学需氧量	160	176	171	174	170	mg/L	500	达标
(2025/06/04)	悬浮物	106	98	101	112	104	mg/L	400	达标
20104))	3.26	3.43	3.51	3.55	3,44	mg/L	A- Y	_

2、执行广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准 表 6-2 有组织废气检测结果

处理设施	二级活性炭					-	20	
排气筒高度	15 米					W X	-	P
采样点位	检测项目	检测结果	检测结果			达标		
76.1T 766 EZ.	1至647年日	第一次	第二次	第三次	第四次	最大值	限值	情况
复合、印刷、涂布、 烘干、制袋工序废气 处理前监测口(气-01) (2025/06/03)	标干流量(m³/h)	30612	30982	30125	31099	31099	-50	-
	臭气浓度(无量纲)	3548	3090	4168	4168	4168	_	_
复合、印刷、涂布、 烘干、制袋工序废气	标干流量(m³/h)	32722	32224	32758	32007	32758	-	-
处理后监测口(气-01) (2025/06/03)	臭气浓度 (无量纲)	549	630	478	630	630	2000	达核
复合、印刷、涂布、 烘干、制袋工序废气	标字流量(m³/h)	31114	30518	30951	30684	31114	-	-
处理前监测口(气-01) (2025/06/04)	臭气浓度 (无量纲)	3548	4168	4168	3548	4168	-<	G
复合、印刷、涂布、 烘干、制装工序废气	标干流量(m³/h)	33108	32280	32759	32458	33108	-	Y
处理后监测口(气-01) (2025/06/04)	臭气浓度 (无量纲)	478	416	416	354	478	2000	达林

"表示该标准中无限值要求或无需填写; 【浓度执行《恶臭污染物排放标准》(GB 14554-93)表 2 恶臭污染物排放标准值。

报告编号: GDJH2505009EB 续表 6-2 有组织废气检测结果

处理设施	二级活性	主 炭	TA		非放速率: kg/h,		2005		
排气筒高度	15米				0 0	- CO - 3			
采样点位		检测项目		检测结果					
木件总位			第一次	第二次	第三次	均值	限值	达标情况	
William Marie		标干流量	30612	30982	30125	30573	0'-	-	
	VOCs	排放浓度	20.0	18.9	19.0	19.3	-	R	
	vocs	排放速率	0.612	0.586	0.572	0.590	-	-	
MA CHE M		样品1排放浓度	16.8	16.8	16.6	16.7		-	
[合、印刷、涂		样品1排放速率	0.514	0.520	0.500	0.511	-	-	
工序废气处理		样品 2 排放浓度	16.5	16.5	16.4	16.5	-	-	
的监测口	7	样品 2 排放速率	0.505	0.511	0.494	0,504	-	-	
(/4-01)	非甲烷 总烃	样品3排放浓度	16.6	16.9	16.8	16.8	A	1	
(2025/06/03)		样品3排放速率	0.508	0.524	0.506	0.514	1		
	100	样品4排放浓度	17.0	16.7	17.0	16.9	7-6	-	
	and the same	样品4排放速率	0.520	0.517	0.512	0.517	7-7	_	
	A 150	平均排放浓度	16.7	16.7	16.7	16.7	- 1	-	
Charles and the	S 3	平均排放速率	0.511	0.517	0.503	0.511	OF-	-	
550 00		标干流量	32722	32224	32758	32568	-	_	
Service States	VOCs	排放浓度	2.70	2.75	2.70	2.72	120	达板	
all and	vocs	排放速率	8.83×10 ⁻²	8.86×10-2	8.84×10 ⁻²	8.86×10 ⁻²	2.55	达核	
夏合、印刷、涂	- Par	样品1排放浓度	2.66	2.68	2.65	2.66	60	达核	
行、烘干、制袋	Shipping 1	样品1排放速率	8.70×10 ⁻²	8.64×10 ⁻²	8.68×10 ⁻²	8.66×10 ⁻²	-	-	
工序废气处理	100	样品2排放浓度	2.69	2.67	2.64	2.67	60	达板	
上	100	样品2排放速率	8.80×10 ⁻²	8.60×10 ⁻²	8.65×10 ⁻²	8.70×10 ⁻²	9 -	-	
(气-01)	非甲烷	样品3排放浓度	2.65	2.66	2.68	2.66	60	达核	
(2025/06/03)	总烃	样品3排放速率	8.67×10 ⁻²	8.57×10 ⁻²	8.78×10 ⁻²	8.66×10 ⁻²	-	×	
()	28	样品4排放浓度	2:69	2.69	2.68	2.69	60	达板	
He Marie	C. A. S.	样品4排放速率	8,80×10 ⁻²	8.67×10 ⁻²	8.78×10 ⁻²	8.76×10 ⁻²	-	-	
A STATE OF THE STATE OF	1	平均排放浓度	2.67	2.68	2.66	2.67	60	达板	
		平均排放速率	8.74×10 ⁻²	8.64×10 ⁻²	8.71×10 ⁻²	8.70×10 ⁻²	-	-	

备注: 1、"一"表示该标准中无限值要求或无需填写;
2、非甲烷总经执行《印刷工业大气污染物排放标准》(GB 41616-2022)中表 1 大气污染物排放限值与《合成树脂工业污染物排放标准》(GB 31572-2015)(含 2024 年修改单)表 5 大气污染物特别排放限值的较严值; VOCs 执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表 2 凹版印刷第 II 时段排放限值(排气) 高度未高出周围 200m 半径范围最高建筑 5m 以上,最高允许排放速率按标准限值的 50%执行)。

报告编号: GDJH2505009EB 续表 6-2 有组织废气检测结果

处理设施	二级活性	Ł炭	MAR		非放速率: kg/h,	The state of the s			
排气筒高度	15米				Dies. Pro-	10. 3	-	-	
采样点位		检测项目		检测结果					
木件無世				第二次	第三次	均值	限值	达标 情况	
Million California		标干流量	31114	30518	30951	30861	07-	-	
	VOCs	排放浓度	20.5	18.8	18.8	19.4	_	R	
	vocs	排放速率	0.638	0.574	0.582	0.599	-	-	
A PHE A		样品 排放浓度	17.7	17.5	17.2	17.5		-	
夏合、印刷、涂 方、块干、制袋		样品1排放速率	0.551	0.534	0.532	0.540	- 9	-	
工序废气处理		样品2排放浓度	17.8	17.6	17.4	17.6	-		
前监测口	7	样品 2 排放速率	0.554	0.537	0.539	0,543	1	-	
(/-(-01)	非甲烷 总烃	样品3排放浓度	17.3	17.7	17.8	17.6		1	
(2025/06/04)		样品3排放速率	0.538	0.540	0.551	0.543	E		
	C. Bar	样品4排放浓度	17.4	17.3	18,0	17.6	7-6	-	
	400	样品4排放速率	0.541	0.528	0.557	0.543	72	-	
2000	100	平均排放浓度	17.6	17.5	17.6	17.6	-	-	
de de	6t ut	平均排放速率	0.548	0.534	0.545	0.543	0-	0 -	
Service of the servic	-00	标干流量	33108	32280	32759	32716	-	-	
	VOCs	排放浓度	2.70	2.77	2.71	2.73	120	达核	
		排放速率	8.94×10 ⁻²	8.94×10-2	8.88×10 ⁻²	8.93×10 ⁻²	2.55	达核	
A CHEM M	18.34	样品1排放浓度	2.66	2.67	2.71	2.68	60	达核	
是合、印刷、涂	WHEN THE REAL PROPERTY.	样品1排放速率	8.81×10 ⁻²	8.62×10 ⁻²	8.88×10 ⁻²	8.77×10 ⁻²	25	100	
方、烘干、制袋工度麻魚外型	4. 100	样品 2 排放浓度	2.64	2.70	2.66	2.67	60	达核	
工序废气处理后监测口	St. 18	样品 2 排放速率	8.74×10 ⁻²	8.72×10-2	8.71×10 ⁻²	8.74×10 ⁻²	6V	×	
7 × 1. NON. NO. N. C	非甲烷	样品3排放浓度	2.65	2.66	2.69	2.67	60	达核	
(气-01)	总烃	样品3排放速率	8.77×10 ⁻²	8.59×10 ⁻²	8.81×10 ⁻²	8.74×10 ⁻²	8 - 8	-	
(2025/00/04)		样品4排放浓度	2.68	2.68	2.64	2.67	60	达板	
The sales of the	Sept.	样品4排放速率	8,87×10-2	8.65×10 ⁻²	8.65×10 ⁻²	8.74×10 ⁻²		-	
Charles States	A CONTRACT	平均排放浓度	2.66	2.68	2.68	2.67	60	达板	
30		平均排放速率	8.81×10 ⁻²	8.65×10 ⁻²	8.78×10 ⁻²	8.74×10 ⁻²	-	-	

备注: 1、"一"表示该标准中无限值要求或无需填写;
2、非甲烷总经执行《印刷工业大气污染物排放标准》(GB 41616-2022)中表 1 大气污染物排放限值与《合成树脂工业污染物排放标准》(GB 31572-2015)(含 2024 年修改单)表 5 大气污染物特别排放限值的较严值; VOCs 执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)表 2 凹版印刷第 II 时段排放限值(排气简高度未高出周围 200m 半径范围最高建筑 5m 以上,最高允许排放速率按标准限值的 50%执行)。

报告编号: GDJH2505009EB 表 6-3 无组织废气检测结果

A 6	P. Sell	200	检测	州结果	100	气象条件					
监测点位	采样日期	频次	VQCs (mg/m ³)	臭气浓度 (无量纲)	风向	气温℃	气压 kPa	风速 m/s			
100		1	0.32	<10	南	25.5	99.5	2.1			
STATE OF	2025/06/03	2	0.36	10	南	27.9	99.2	1.5			
一界无组织	2025/06/05	3	0.36	<10	南	26.1	99.0	1.8			
发气上风向		4	-	10	南	24.5	99.1	2.1			
参照点 1#		1	0.35	<10	南	27.0	100.1	2.4			
Sur and 14	2025/06/04	2	0.36	10	南	30.1	99.7	1.6			
2023/00	2025/00/04	3	0.34	10	南	28.2	99.5	1.5			
		4	_	<10	南	26.7	99.4	2.0			
		1	0.42	19	南	25.3	99.5	1.5			
	2025/06/03	2	0.44	17	南	27.8	99.2	À.			
界无组织	2023/06/03	3	0.47	13	南	25.9	99.0	1.7			
5万元组织 5万元组织		4	A - A	14	南	24.3	99.1	1.5			
监控点 2#	100	1	0.56	16	南	26.7	100,1	2.3			
mr.3.E.W. 2#	2025/06/04	2	0.50	18	南	29.9	99.7	1,4			
2025/0	2023/06/04	3	0.41	12	南	28,1	99.5	1.8			
at P	0	4	10° -10°	13	南	26,5	99.4	2.			
Mr. IEE	400	1	0.49	16	南	25.3	99.5	2.0			
COATO CO	2025/06/03	2	0.45	11	南	27.7	99.2	1			
界无组织	2023/06/03	3	0.43	11	南	26.0	99.0	1.0			
5个下风向	200	4		15	南	24.4	99.1	2.0			
监控点 3#	AND SHAPE	1	0.39	15	南	26.9	100.1	2.3			
military 24	2025/06/04	2	0,42	17	啊	30.0	99.7	1.:			
100	2023/00/04	3	0.44	19	南	28.0	99.5	1.			
10 m		4	5//	16	南	26.6	99.4	2.			
	ACT MENT	1	0.47	13	南	25.4	99.5	2.0			
	2025/06/03	2	0.50	14	南	28.0	99.2	1.4			
界无组织	2023/00/03	3	0.50	15	南	26.0	99.0	1.			
货气下风向		4		18	南	24.4	99.1	2.			
监控点 4#		-1	0.46	14	南	26.8	100.1	2			
me 4-10 MM ALL	2025/06/04	2	0.43	11	南	30.2	99.7	1.			
A Party	2025/00/04	3	0.44	14	南	28.1	99.5	1.3			
		4	- A	17	南	26.8	99.4	2.0			
- 87	最大值		0.56	19	- 57	-	-				
	厅标准限值		2.0	20	J	-	-				
W	达标情况		达标	达标	-	_	-				

备注: 1、"一"表示无端填写; 2、VOCs 执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)中表 3 无组织排放监控点次度限值; 臭气浓度执行《恶臭污染物排放标准》(GB 14554-93)表 1 厂界新扩改建了级标准。

报告编号: GDJH2505009EB 续表 6-3 无组织废气检测结果

100	1	频	1		企测结果	1	11	气象条件			
监测点位	采样日期	次		非申	完总烃(m	g/m ³)		Ediele	气温	气压	风速
May A		2	样品1	样品2	样品3	样品4	均值	风向	°C	kPa	m/s
		1	0.16	0.17	0.14	0.18	0.16	南	25.5	99.5	2.1
厂界无组织	2025/06/03	2	0.12	0.18	0.15	0.17	0.16	南	27.9	99.2	1.5
废气上风向		3	0.16	0.16	0.18	0.14	0.16	南	26.1	99.0	1.8
参照点4#	9/7	1	0,16	0.15	0.19	0.16	0.16	南	27.0	100.1	2:4
202	2025/06/04	2	0.13	0.15	0.14	0.14	0.14	南	30.1	99.7	1.6
100		3	0.16	0.16	0.18	0.16	0.16	南	28.2	99.5	1.9
		1	0.57	0.56	0.52	0.51	0.54	南	25.3	99.5	1.9
M C 10 10	2025/06/03	2	0.50	0.54	0.53	0.55	0.53	南	27.8	99.2	1.4
界无组织 变气不风向		3	0.47	0.54	0.48	0.52	0.50	南	25.9	99.0	1.7
监控点 2#		1	0.53	0.48	0.47	0.47	0.49	南	26.7	100.1	2.3
20	2025/06/04	2	0.50	0.52	0.48	0.50	0.50	南	29.9	99.7	1.4
	10 10 10 T	3	0.47	0.47	0.53	0.51	0.50	南	28.1	99,5	1.8
3, 3	2	1	0.32	0.31	0.33	0.32	0.32	南	25.3	99.5	2.0
- w - w . w	2025/06/03	2	0.34	0.33	0.34	0.38	0.35	南	27.7	99.2	1.3
厂界无组织 废气下风向		3	0.33	0.36	0.32	0.34	0.34	南	26.0	99.0	1.6
监控点 3#	15	1	0.35	0.38	0.47	0,40	0.40	南	26.9	100.1	2.2
THE J.T. JAN. DAY	2025/06/04	2	0.37	0.39	0.39	0.37	0.38	南	30.0	99.7	1.5
	31	3	0.40	0.36	0.38	0.43	0.39	南	28.0	99.5	1.7
States 6	100	1	0.41	0.44	0.43	0.46	0.44	南	25.4	99.5	2.0
	2025/06/03	2	0.46	0.42	0.46	0.44	0.44	南	28.0	99.2	1.4
厂界无组织 废气下风向		3	0.56	0.49	0.49	0.48	0.50	南	26.0	99.0	1.7
监控点 4#	100	1	0.52	0.49	0.53	0.51	0.51	南	26.8	100.1	2.3
THETE WY ALL	2025/06/04	2	0.55	0.52	0.50	0.51	0.52	南	30.2	99.7	1.4
	135	3	0.52	0.48	0.51	0.49	0.50	南	28.1	99.5	1.8
1	最大值	-	0.57	0.56	0.53	0.55	0.54	_	-	-	-
执行	标准限值			- 28	4.0			-	-		-
达	标情况				达标	7	1	_	_	_	_

备注: 1. "一"表示无需填写:
2. 执行《合成树脂工业污染物排放标准》(GB 31572-2015)(含 2024 年修改单)及表 9 企业边界大气染物排放浓度限值。

报告编号: GDJH2505009EB 续表 6-3 无组织废气检测结果

	Page Trail.	425	100	检测结果					气象条件			
监测点位	采样日期	類次	非甲烷总烃(mg/m³)					口点 气温	气温	气压	风速	
Page .	G. 54		样品1	样品2	样品3	样品4	均值	风向	°C	kPa	m/s	
厂区内无组	0	1	0.69	0.68	0.71	0.70	0.70	南	24.4	99.6	2.3	
织废气2号	2025/06/03	2	0.69	0.71	0.74	0.67	0.70	南	25.6	99.5	2.1	
楼 3 层生产		3	0.67	0.74	0.73	0.72	0.72	南	27.2	99.3	1.7	
车间门口监		1	0.76	0.75	0.75	0.75	0.75	南	25.8	100.2	2.6	
测点5#	2025/06/04	2	0.76	0.75	0.74	0.74	0.75	南	26.9	100.1	2.3	
04 JA 34		3	0.68	0.75	0.73	0.77	0.73	南	29.4	99.9	2.1	
厂区内无组		1	0.69	0.66	0.65	0.65	0.66	南	27.9	99.2	1.5	
织皮气1号	2025/06/03	2	0.65	0.66	0.67	0.68	0.66	南	27.4	99.1	1.6	
楼 2 层生产		3	0.64	0.70	0.71	0.64	0.67	南	26.3	99.0	1.8	
车间门口监		1	0.75	0.71	0.72	0.67	0.71	南	30.2	99.7	1.6	
测点 6#	2025/06/04	2	0.72	0.75	0.75	0.74	0.74	南	29.4	99.6	1.8	
037 200 000		3	0.75	0.74	0.76	0.73	0.74	南	28.2	99.5	1.9	
	最大值	100	0.76	0.75	0.76	0.77	0.75		-			
执行	标准限值		8	1	6			7-			7-	
过	达标情况	517	Hips	3100	达标	82		-	7	=	1	

备注: 1、"一"表示无需填写; 该检测结果的检测方法为气相色谱法; 2、执行《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值(监控点处 1h 平均浓度值)。

续表 6-3 无组织废气检测结果

监测点位	采样日期	频次	检测结果		气多	条件	
mi ou with	水件口朔	列仏	非甲烷总烃(mg/m³)	风向	气温℃	气压 kPa	风速 m/s
2000		1	1.26	南	24.4	99.6	2.3
厂区内无组织废气2	2025/06/03	2	1.21	南	25.6	99.5	2.1
号楼 3 层生产车间	F. F.	3	1.22	南	27.2	99.3	1.7
门口监测点 5#	2025/06/04	1	1.24	南	25.8	100.2	2.6
		2	1.28	南	26.9	100.1	2.3
The Party Party		3	1.32	南	29.4	99.9	2.1
ation attack	2025/06/03	1	1.24	南	27.9	99.2	1.5
厂区内无组织废气1		2	1.28	南	27.4	99.1	1.6
号楼 2 层生产车间		3	1.32	南	26.3	99.0	1.8
门口监测点 6#		- 1	1.29	南	30.2	99.7	1.6
1 1 1 miles 1 mg On	2025/06/04	2	1.34	南	29.4	99.6	1.8
		3	1.30	南	28.2	99.5	1.9
Ji di	最大值			· -	-	-	-
执行	标准限值	311	20	-	-	-	-
达	标情况	3571	达标	0-	-		

"一"表示无需填写;该检测结果的检测方法为便携式检测法; 2、执行《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 厂区内 VOCs 光细织排

第 21 页 共 22 页

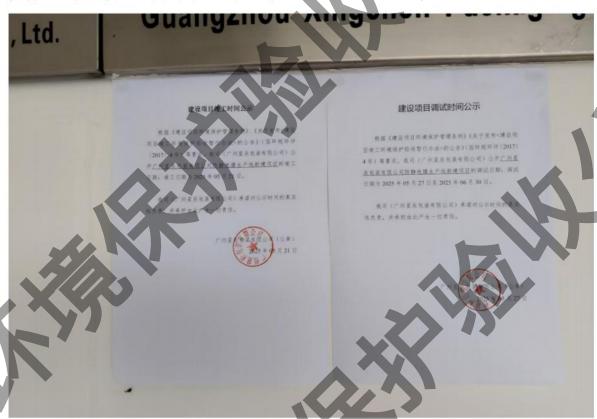
报告编号: GDJH2505009EB 表 6-4 噪声监测结果

序号			检测结果	$L_{eq}[dB(A)]$		11. 4 = 1 = 10. mg At-	
	采样点位	2025/	06/03	2025/06/04		执行标准限值	
		昼间	夜间	昼间	夜间	Leq[dB (A)]	
2 10	厂界西南侧外 1 米处 1#	61	48	60	48	100	
2	厂界西北侧外1米处2#	59	46	59	48	昼间: 65	
3	厂界东北侧外 1 米处 3#	62	48	63	46	夜间: 55	
4	厂界东南侧外1米处4#	59	46	60	46	200	

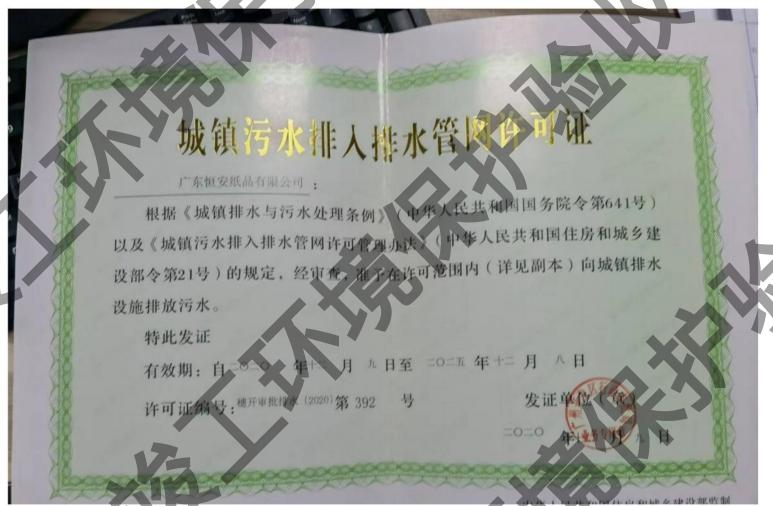
复合、印刷、涂布、烘干、制袋工序废气处

厂界无组织废气采样

厂区内无组织废气采样


厂界噪声监测

报告结束



附件6 项目竣工、调试时间公示照片

附件7 园区排水证

附件8 工况证明

企业生产工况说明

我单位广州星晨包装有限公司在2025年6月3日~2025年6月4日,验收监测期间、项目生产设备、废水、废气处理设施等设备均正常运作,生产状况基本稳定,生产负荷达到93%。

表 1 验收监测期间生产工况负荷表

	44 1 484 1	X.IIII.0037931PJ_T_/	1100341414	-L-06341944					
产品	环评设计年	环评设计日 产能 (吨)	验收监测期(1/6	生产工况					
	产能 (吨)	J-BE (ME)	2025.6.3	2025.6.4					
物帶地屏蔽袋	350	1.167	1.085	1.085	93%				
防輸也對額防潮袋	415	1.383	1.286	1.286	93%				
铝塑包装卷材	450	1.500	1.395	1.395	93%				
食品包装膜/袋	100	0.333	0.310	0.210	93%				
日化品包膜/袋	100	0.333	0.310	0,310	93%				
EPE防静电间纸	487	1.623	1.509	1,509	93%				
企业全年生产 300 升	Ę,								

建设单位(盖章):广州星辰包装有限公司

附件8其他需要说明的事项

广州星辰包装有限公司防静电膜生产线新建项目竣工环境保护验收其他需要说明的事项

根据《建设项員竣工环境保护验收暂行办法》,"其他需要说明的事项"中应 如实记载的内容包括环境保护设施设计、施工和验收过程简况,环境影响报告表 及其事批部门审批决定中提出的除环境保护设施外的其他环境保护措施的落实 情况。以及整改工作情况等。现将建设单位需要说明的具体内容和要求列举如下:

1.环境保护设施设计、施工和验收过程简况

1.1 设计简况

- (7) 本项目建设严格执行配套建设的环境保护设施与主体工程同时设计、同时施工、同时投产使用的"三同时"制度,本项目实际总投资 1000 万元,其中环保投资 20 万元,占总投资的 2%。
- (2) 本项目严格按照环评批复、环保规范的要求、落实了防范环境污染的 各项环保措施。
- (3) 根据环评及批复要求,落实"三废"治理费用,做到专款专用,本项目 实施后应保证足够的环保资金,确保污染防治措施有效地运行,保证污染物达标 排放。

1.2 施工简况

本项目建设时,环境保护设施与主体工程同时施工,确保环保处理设施等工程同时进行,同时完工 并落实环境影响报告表及其审批部门审批决定中提出的环境保护对策措施。

1.3 验收过程简况

2025年5月21日,本项目主体工程及配套设施竣工,并在公司进行了竣工 日期的公元。

2025年5月27日至2025年6月30日,本项目进行调试,并在公司进行公 调试日期的公示。

2025年6月3日至2025年6月4日,建设单位委托广东景和检测有限公司

对本项目废气、废水、噪声进行竣工验收货制、检测报告编号: GDJH2505009EB。

2025年9月15日,建设集体、技术评事专家 监测单位等代表组成验收工作组。验收工作组严格依据国家有关法律法规、建设项目环境保护验收技术规范、项目环境影响报告表和审批部门的批复等要求对本项目进行现场勘查。验收工作组在查阅了相关资料,经认真讨论后,最终提出"广州星辰包装有限公司防静电膜生产线新建项目"通过竣工环境保护验收的结论。

在自主發收期间,(广州星辰包装有限公司防静电膜生产线新建项目竣工环境保护验收监测报告)在网上进行了公示,公示时间为20个工作日。

1.4 公众反馈意见及处理情况

本项目在设计、施工和验收期间没有收到过公众反馈意见及投诉。

2.其他环境保护措施的实施情况

根据广州开发区行政审批局关于《广州星辰包装有限公司,防静电散生产线新建项目环境影响报告表》的批复(穗开审批环评(2025》73号),提出的除环境保护设施外的其他环境保护措施,主要包括制度措施和配置措施等,现将需要说明的措施内容和要求梳理如下:

2.1 制度措施落实情况

(1) 环保组织机构及规章制度

建设单位制定了环境保护管理制度,加强生产、安全和环境管理,满足环境保护的规定和要求。公司建立了环保心组,主要负责环境保护设施的日常运行维护,明确环境管理分账记录要求、规定运行维护费用保障计划等。

(2) 环境风险防范措施

建设单位已制订并落实有效的环境风险防范措施,建立健全环境事故应急体系,制订严格的规章制度,加强生产及污染防治设施的管理和维护,减少污染物排放。

(3) 环境监测计划

建设单位已按照环境影响报告表及其审批部门审批决定要求制定了环境。
测计划。定期委托有资质的环境监测机构开展常规监测。

2.2 配套措施落实情况

(1) 区域削减及淘汰等后产能

本项目不涉及污染物区域削减及淘汰客后产能。

(2) 防护距离控制及居民搬迁

根据环境影响报告表及审批部门审批决定,本项目不涉及防护距离控制及居 民搬迁,

2.3 其他措施落实情况

本项目无体地补偿、珍稀动植物保护、区域环境整治、相关外围工程建设。

3整改工作情况

本项目建设基本落实了环评及批复中要求的污染防治措施,根据验收监测经 果,验收期间废气、废水、噪声各污染物均达标排放。本项目固体废物均得到零 善处理处置。本项目对周围环境影响较小,符合建设项目竣工环境保护验收条件, 因此,本项目不涉及整改工作情况。

